Lie algebroids and mechanics

Paulette Libermann

Archivum Mathematicum (1996)

  • Volume: 032, Issue: 3, page 147-162
  • ISSN: 0044-8753

Abstract

top
We give a formulation of certain types of mechanical systems using the structure of groupoid of the tangent and cotangent bundles to the configuration manifold M ; the set of units is the zero section identified with the manifold M . We study the Legendre transformation on Lie algebroids.

How to cite

top

Libermann, Paulette. "Lie algebroids and mechanics." Archivum Mathematicum 032.3 (1996): 147-162. <http://eudml.org/doc/247853>.

@article{Libermann1996,
abstract = {We give a formulation of certain types of mechanical systems using the structure of groupoid of the tangent and cotangent bundles to the configuration manifold $M$; the set of units is the zero section identified with the manifold $M$. We study the Legendre transformation on Lie algebroids.},
author = {Libermann, Paulette},
journal = {Archivum Mathematicum},
keywords = {Lie groupoid; Lie algebroid; constrained mechanical system; Legendre transformation; time-independent Lagrangian systems; hyperregular Lagrangian; constrained Hamilton equations; constrained Lagrange equations; Legendre transformation; constraint submanifold},
language = {eng},
number = {3},
pages = {147-162},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Lie algebroids and mechanics},
url = {http://eudml.org/doc/247853},
volume = {032},
year = {1996},
}

TY - JOUR
AU - Libermann, Paulette
TI - Lie algebroids and mechanics
JO - Archivum Mathematicum
PY - 1996
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 032
IS - 3
SP - 147
EP - 162
AB - We give a formulation of certain types of mechanical systems using the structure of groupoid of the tangent and cotangent bundles to the configuration manifold $M$; the set of units is the zero section identified with the manifold $M$. We study the Legendre transformation on Lie algebroids.
LA - eng
KW - Lie groupoid; Lie algebroid; constrained mechanical system; Legendre transformation; time-independent Lagrangian systems; hyperregular Lagrangian; constrained Hamilton equations; constrained Lagrange equations; Legendre transformation; constraint submanifold
UR - http://eudml.org/doc/247853
ER -

References

top
  1. Foundations of mechanics, Benjamin Reading, 1978. MR0515141
  2. Groupoides de Lie et groupoides symplectiques, Séminaire Sud-Rhodanien. Publications Dept. Math. Lyon (1-partie 1989, 2-partie 1990 ). MR1104916
  3. Mathematical aspects of classical and celestial mechanics, in “Dynamical Systems III (V. I. Arnold ed.), Springer-Verlag Berlin, Heidelberg, 1988. MR2269239
  4. Mécanique hamiltonienne en présence de contraintes, Illinois Journal of Mathematics, 38, 1, 1994, 148-175. MR1245839
  5. Variétés de Poisson, Algébroides de Lie, Séminaire Sud-Rhodanien, Publications Dept Math. Lyon, 1988 1/B. MR1040867
  6. Oeuvres complètes, Parties I. 1 et I.2 “Topologie algébrique et Geométrie Différentielle". Zbl0561.01027
  7. Geométrie différentielle et mécanique analytique, Hermann, Paris, 1969. Zbl0653.53001MR0242081
  8. Geometry, Physics and Systems, Marcel Dekker, New York, 1973. Zbl0285.58001MR0494183
  9. Espaces variationnels et mécanique, Ann. Inst. Fourier, Grenoble 12 (1962), 1-124. Zbl0281.49026MR0215269
  10. On the Euler-Lagrange differential in fibered manifolds, Reports on mathematical physics, vol 12 (1977). MR0501101
  11. Exact Gerstenhaber algebras and Lie bialgebroids, Acta Applicandae-Mathematicae, 41, 1990, 35-81. Zbl0837.17014MR1362125
  12. The Lie bialgebroid of a Poisson-Nijenhuis manifold, Letters Math. Phys., 1996. Zbl1005.53060MR1421686
  13. Pseudogroupes infinitésimaux, Bull. Soc. Math. 87 (1959), 409-425. Zbl0198.26801MR0123279
  14. Prolongements des fibrés principaux et groupoides différentiables, Sem. Analyse Globale Montreal (1969), 7-108. MR0356117
  15. Groupoides différentiables et presque parallélisme, Symp. Math. X (convegno di Geom. Diff.) Roma. 1971, 59-93. MR0370668
  16. Parallélismes, Jour. of Diff. Geometry, 8, No. 4, Dec, 1973, 511-539. Zbl0284.53023MR0353189
  17. On symplectic and contact groupoids, Proc. Conf. Opava, 1992, Silesian University, Opava, 1993, 29-45. Zbl0805.53034MR1255524
  18. Symplectic geometry and analytical mechanics, Math. Appl., Reidel, Publ. Comp. Dordrecht, 1987. MR0882548
  19. Manin triples for Lie bialgebroids, preprint 1995. MR1472888
  20. Lie algebroids and Lie pseudoalgebras, Bull. London Math. Soc. 27 (1995), 97-147. Zbl0829.22001MR1325261
  21. Lie bialgebroids and Poisson groupoids, Duke Math. Jour. 73, 415-452, 1994. Zbl0844.22005MR1262213
  22. Reduction of Constrained Mechanical Systems and Stability of Relative Equilibria, Comm. Math. Phys. 174, 1995, 295-318. Zbl0859.70012MR1362167
  23. Théorie de Lie pour les groupoides différentiables, C.R. Acad. Sc. Paris, 263, 1966, 907-910; 264, 1967, 245-248 Troisième théorème de Lie pour les groupoides différentiables C.R. Acad. Sc. Paris, 267, 1968, 21-23. Sur le groupoide cotangent de Weinstein-Dazord C.R. Acad. Sc. Paris 306, 1988, 557-560. Zbl0232.22028
  24. Structure des Systèmes Dynamiques, Dunod, Paris, 1969. Zbl0186.58001MR0260238
  25. Sur la différentielle de Lagrange, C.R. Acad. Sc. Paris 280, A, 1975, 1295-1298. Zbl0314.58018MR0377987
  26. Second order hamiltonian vector fields on tangent bundles, E.S.I 49, 1993, Vienna. Zbl0822.58021
  27. Lagrangian mechanics and groupoids, preprint U. of Cal., Berkeley 1992. Zbl0844.22007MR1365779

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.