A family of 4-designs on 26 points
Dragan M. Acketa; Vojislav Mudrinski
Commentationes Mathematicae Universitatis Carolinae (1996)
- Volume: 37, Issue: 4, page 843-860
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topAcketa, Dragan M., and Mudrinski, Vojislav. "A family of 4-designs on 26 points." Commentationes Mathematicae Universitatis Carolinae 37.4 (1996): 843-860. <http://eudml.org/doc/247869>.
@article{Acketa1996,
abstract = {Using the Kramer-Mesner method, $4$-$(26,6,\lambda )$ designs with $PSL(2,25)$ as a group of automorphisms and with $\lambda $ in the set $\lbrace 30,51,60,81,90,111\rbrace $ are constructed. The search uses specific partitioning of columns of the orbit incidence matrix, related to so-called “quasi-designs”. Actions of groups $PSL(2,25)$, $PGL(2,25)$ and twisted $PGL(2,25)$ are being compared. It is shown that there exist $4$-$(26,6,\lambda )$ designs with $PGL(2,25)$, respectively twisted $PGL(2,25)$ as a group of automorphisms and with $\lambda $ in the set $\lbrace 51,60,81,90,111\rbrace $. With $\lambda $ in the set $\lbrace 60,81\rbrace $, there exist designs which possess all three considered groups as groups of automorphisms. An overview of $t$-$(q+1,k,\lambda )$ designs with $PSL(2,q)$ as group of automorphisms and with $(t,k) \in \lbrace (4,5), (4,6), (5,6)\rbrace $ is included.},
author = {Acketa, Dragan M., Mudrinski, Vojislav},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {block designs; orbits; projective linear group; projective special linear group; twisted projective linear group; Kramer-Mesner method; block designs; orbits; projective linear group; projective special linear group; twisted projective linear group; Kramer-Mesner method},
language = {eng},
number = {4},
pages = {843-860},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A family of 4-designs on 26 points},
url = {http://eudml.org/doc/247869},
volume = {37},
year = {1996},
}
TY - JOUR
AU - Acketa, Dragan M.
AU - Mudrinski, Vojislav
TI - A family of 4-designs on 26 points
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1996
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 37
IS - 4
SP - 843
EP - 860
AB - Using the Kramer-Mesner method, $4$-$(26,6,\lambda )$ designs with $PSL(2,25)$ as a group of automorphisms and with $\lambda $ in the set $\lbrace 30,51,60,81,90,111\rbrace $ are constructed. The search uses specific partitioning of columns of the orbit incidence matrix, related to so-called “quasi-designs”. Actions of groups $PSL(2,25)$, $PGL(2,25)$ and twisted $PGL(2,25)$ are being compared. It is shown that there exist $4$-$(26,6,\lambda )$ designs with $PGL(2,25)$, respectively twisted $PGL(2,25)$ as a group of automorphisms and with $\lambda $ in the set $\lbrace 51,60,81,90,111\rbrace $. With $\lambda $ in the set $\lbrace 60,81\rbrace $, there exist designs which possess all three considered groups as groups of automorphisms. An overview of $t$-$(q+1,k,\lambda )$ designs with $PSL(2,q)$ as group of automorphisms and with $(t,k) \in \lbrace (4,5), (4,6), (5,6)\rbrace $ is included.
LA - eng
KW - block designs; orbits; projective linear group; projective special linear group; twisted projective linear group; Kramer-Mesner method; block designs; orbits; projective linear group; projective special linear group; twisted projective linear group; Kramer-Mesner method
UR - http://eudml.org/doc/247869
ER -
References
top- Acketa D.M., Mudrinski V., A -design on points, submitted.
- Acketa D.M., Mudrinski V., Paunić Dj., A search for -designs arising by action of , Publ. Elektrotehn. Fak., Univ. Beograd, Ser. Mat. 5 (1994), 13-18. (1994) Zbl0816.05017MR1322263
- Acketa D.M., Mudrinski V., Two -designs on points, accepted for Discrete Mathematics. Zbl0873.05010
- Alltop W.O., An infinite class of -designs, J. Comb. Th. 6 (1969), 320-322. (1969) Zbl0169.01903MR0241316
- Beth T., Jungnickel D., Lenz B., Design Theory, Bibliographisches Institut Mannheim- Wien-Zürich, 1985. Zbl0945.05005MR0779284
- Chee Y.M., Colbourn C.J., Kreher D.L., Simple -designs with , Ars Combinatoria 29 (1990), 193-258. (1990) MR1046108
- Dautović S., Acketa D.M., Mudrinski V., A graph approach to isomorphism testing of - designs arising from , submitted.
- Denniston R.H.F., Some new -designs, Bull. London Math. Soc. 8 (1976), 263-267. (1976) Zbl0339.05019MR0480077
- Driessen L.M.H.E., -designs, , Tech. Report (1978), Department of Mathematics, Eindhover University of Technology, Holland.
- Gorenstein D., Finite Simple Groups, An Introduction to Their Classification, Plenum Press, New York, London, 1982. Zbl0672.20010MR0698782
- Huppert B., Endliche Gruppen, I. Die Grundlehren der matematischen Wissenschaften, Band 134 (1967), Springer-Verlag, Berlin, Heidelberg, New York, xii + 793 pp. MR0224703
- Huppert B., Blackburn N., Finite Groups, III., Die Grundlehren der matematischen Wissenschaften, Band 243 (1982), Springer-Verlag, Berlin, Heidelberg, New York, p.454. Zbl0514.20002MR0662826
- Janko Z., Tonchev V., Private communication, .
- Kramer E.S., Leavitt D.W., Magliveras S.S., Construction procedures for -designs and the existence of new simple -designs, Ann. Discrete Math. 26 (1985), 247-274. (1985) Zbl0585.05002MR0833794
- Kramer E.S., Mesner D.M., -designs on hypergraphs, Discrete Math. 15 (1976), 263-296. (1976) Zbl0362.05049MR0460143
- Kreher D.L., Radziszowski S.P., The existence of simple - designs, Jour. of Combinatorial Theory, Ser. A 43 (1986), 237-243. (1986) Zbl0647.05013MR0867649
- Kreher D.L., Radziszowski S.P., Simple - designs from , Ann. Discrete Math. 34 (1987), 315-318. (1987) MR0920656
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.