On the asymmetric divisor problem with congruence conditions
Commentationes Mathematicae Universitatis Carolinae (1996)
- Volume: 37, Issue: 1, page 99-116
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topKühleitner, Manfred. "On the asymmetric divisor problem with congruence conditions." Commentationes Mathematicae Universitatis Carolinae 37.1 (1996): 99-116. <http://eudml.org/doc/247895>.
@article{Kühleitner1996,
abstract = {A certain generalized divisor function $d^*(n)$ is studied which counts the number of factorizations of a natural number $n$ into integer powers with prescribed exponents under certain congruence restrictions. An $\Omega $-estimate is established for the remainder term in the asymptotic for its Dirichlet summatory function.},
author = {Kühleitner, Manfred},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {multidimensional asymmetric divisor problems; -results; error term; asymptotic formula; summatory function; asymmetric divisor problem},
language = {eng},
number = {1},
pages = {99-116},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On the asymmetric divisor problem with congruence conditions},
url = {http://eudml.org/doc/247895},
volume = {37},
year = {1996},
}
TY - JOUR
AU - Kühleitner, Manfred
TI - On the asymmetric divisor problem with congruence conditions
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1996
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 37
IS - 1
SP - 99
EP - 116
AB - A certain generalized divisor function $d^*(n)$ is studied which counts the number of factorizations of a natural number $n$ into integer powers with prescribed exponents under certain congruence restrictions. An $\Omega $-estimate is established for the remainder term in the asymptotic for its Dirichlet summatory function.
LA - eng
KW - multidimensional asymmetric divisor problems; -results; error term; asymptotic formula; summatory function; asymmetric divisor problem
UR - http://eudml.org/doc/247895
ER -
References
top- Apostol T.M., Introduction to analytic number theory, New York-Heidelberg-Berlin, Springer, 1976. Zbl1154.11300MR0434929
- Berndt B., On the average order of a class of arithmetic functions, I, J. Number Theory 3 (1971), 184-203. (1971) MR0284409
- Berndt B., On the average order of a class of arithmetic functions, II, J. Number Theory 3 184-203 (1971). (1971) MR0284409
- Chandrasekharan K., Narasimhan R., The approximate functional equation for a class of zeta-functions, Math. Ann. 152 30-64 (1963). (1963) Zbl0116.27001MR0153643
- Hafner J.L., The distribution and average order of the coefficients of Dedekind functions, J. Number Theory 17 183-190 (1983). (1983) Zbl0515.10042MR0716941
- Hafner J.L., New omega results in a weighted divisor problem, J. Number Theory 28 240-257 (1988). (1988) Zbl0635.10037MR0932373
- Ivić A., The Riemann zeta-function, New York, 1966.
- Krätzel E., Lattice Points, Dordrecht-Boston-London, Kluwer, 1988. MR0998378
- Landau E., Elementary Number Theory. ed., New York 1966, .
- Nowak W.G., On the Piltz divisor problem with congruence conditions, Proc. CNTA Conference, Banff, 1988, (ed. R.A. Mollin) 455-469 (1990). Zbl0731.11052MR1106679
- Nowak W.G., On the Piltz divisor problem with congruence conditions II, Abh. Math. Sem. Univ. Hamburg 60 153-163 (1990). (1990) Zbl0731.11052MR1087125
- Nowak W.G., On the general asymmetric divisor problem, Abh. Math. Sem. Hamburg 65 (1995), to appear. (1995) Zbl0854.11048MR1359135
- Steinig J., On an integral connected with the average order of a class of arithmetical functions, J. Number Theory 4 463-468 (1972). (1972) Zbl0241.10028MR0306096
- Szegö P., Walfisz A., Über das Piltzsche Teilerproblem in algebraischen Zahlkörpern (Erste Abhandlung), Math. Z. 26 138-156 (1927). (1927) MR1544849
- Szegö P., Walfisz A., Über das Piltzsche Teilerproblem in algebraischen Zahlkörpern (Zweite Abhandlung), Math. Z. 26 467-486 (1927). (1927) MR1544868
- Titchmarsh E.C., The theory of the Riemann zeta-function, Oxford, 1951. Zbl0601.10026MR0046485
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.