Indiscernibles and dimensional compactness
Commentationes Mathematicae Universitatis Carolinae (1996)
- Volume: 37, Issue: 1, page 199-203
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topHenson, C. Ward, and Zlatoš, Pavol. "Indiscernibles and dimensional compactness." Commentationes Mathematicae Universitatis Carolinae 37.1 (1996): 199-203. <http://eudml.org/doc/247915>.
@article{Henson1996,
abstract = {This is a contribution to the theory of topological vector spaces within the framework of the alternative set theory. Using indiscernibles we will show that every infinite set $u S\subseteq G$ in a biequivalence vector space $\langle W,M,G\rangle $, such that $x - y \notin M$ for distinct $x,y \in u$, contains an infinite independent subset. Consequently, a class $X \subseteq G$ is dimensionally compact iff the $\pi $-equivalence $\doteq _M$ is compact on $X$. This solves a problem from the paper [NPZ 1992] by J. Náter, P. Pulmann and the second author.},
author = {Henson, C. Ward, Zlatoš, Pavol},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {alternative set theory; nonstandard analysis; biequivalence vector space; compact; dimensionally compact; indiscernibles; Ramsey theorem; nonstandard analysis; dimensionally compact; indiscernibles; Ramsey theorem; alternative set theory; biequivalence vector space},
language = {eng},
number = {1},
pages = {199-203},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Indiscernibles and dimensional compactness},
url = {http://eudml.org/doc/247915},
volume = {37},
year = {1996},
}
TY - JOUR
AU - Henson, C. Ward
AU - Zlatoš, Pavol
TI - Indiscernibles and dimensional compactness
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1996
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 37
IS - 1
SP - 199
EP - 203
AB - This is a contribution to the theory of topological vector spaces within the framework of the alternative set theory. Using indiscernibles we will show that every infinite set $u S\subseteq G$ in a biequivalence vector space $\langle W,M,G\rangle $, such that $x - y \notin M$ for distinct $x,y \in u$, contains an infinite independent subset. Consequently, a class $X \subseteq G$ is dimensionally compact iff the $\pi $-equivalence $\doteq _M$ is compact on $X$. This solves a problem from the paper [NPZ 1992] by J. Náter, P. Pulmann and the second author.
LA - eng
KW - alternative set theory; nonstandard analysis; biequivalence vector space; compact; dimensionally compact; indiscernibles; Ramsey theorem; nonstandard analysis; dimensionally compact; indiscernibles; Ramsey theorem; alternative set theory; biequivalence vector space
UR - http://eudml.org/doc/247915
ER -
References
top- Guričan J., Zlatoš P., Biequivalences and topology in the alternative set theory, Comment. Math. Univ. Carolinae 26.3 525-552. MR0817825
- Náter J., Pulmann P., Zlatoš P., Dimensional compactness in biequivalence vector spaces, Comment. Math. Univ. Carolinae 33.4 681-688. MR1240189
- Šmíd M., Zlatoš P., Biequivalence vector spaces in the alternative set theory, Comment. Math. Univ. Carolinae 32.3 517-544. MR1159799
- Sochor A., Vencovská A., Indiscernibles in the alternative set theory, Comment. Math. Univ. Carolinae 22.4 785-798. MR0647026
- Vopěnka P., Mathematics in the Alternative Set Theory, Teubner-Verlag Leipzig. MR0581368
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.