The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Indiscernibles and dimensional compactness”

p -sequential like properties in function spaces

Salvador García-Ferreira, Angel Tamariz-Mascarúa (1994)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We introduce the properties of a space to be strictly WFU ( M ) or strictly SFU ( M ) , where M ω * , and we analyze them and other generalizations of p -sequentiality ( p ω * ) in Function Spaces, such as Kombarov’s weakly and strongly M -sequentiality, and Kocinac’s WFU ( M ) and SFU ( M ) -properties. We characterize these in C π ( X ) in terms of cover-properties in X ; and we prove that weak M -sequentiality is equivalent to WFU ( L ( M ) ) -property, where L ( M ) = { λ p : λ < ω 1 and p M } , in the class of spaces which are p -compact for every p M ω * ; and that C π ( X ) is a WFU ( L ( M ) ) -space iff...

Ultrafilter-limit points in metric dynamical systems

Salvador García-Ferreira, Manuel Sanchis (2007)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Given a free ultrafilter p on and a space X , we say that x X is the p -limit point of a sequence ( x n ) n in X (in symbols, x = p - lim n x n ) if for every neighborhood V of x , { n : x n V } p . By using p -limit points from a suitable metric space, we characterize the selective ultrafilters on and the P -points of * = β ( ) . In this paper, we only consider dynamical systems ( X , f ) , where X is a compact metric space. For a free ultrafilter p on * , the function f p : X X is defined by f p ( x ) = p - lim n f n ( x ) for each x X . These functions are not continuous in general....