# Booleanization of uniform frames

Bernhard Banaschewski; Aleš Pultr

Commentationes Mathematicae Universitatis Carolinae (1996)

- Volume: 37, Issue: 1, page 135-146
- ISSN: 0010-2628

## Access Full Article

top## Abstract

top## How to cite

topBanaschewski, Bernhard, and Pultr, Aleš. "Booleanization of uniform frames." Commentationes Mathematicae Universitatis Carolinae 37.1 (1996): 135-146. <http://eudml.org/doc/247936>.

@article{Banaschewski1996,

abstract = {Booleanization of frames or uniform frames, which is not functorial under the basic choice of morphisms, becomes functorial in the categories with weakly open homomorphisms or weakly open uniform homomorphisms. Then, the construction becomes a reflection. In the uniform case, moreover, it also has a left adjoint. In connection with this, certain dual equivalences concerning uniform spaces and uniform frames arise.},

author = {Banaschewski, Bernhard, Pultr, Aleš},

journal = {Commentationes Mathematicae Universitatis Carolinae},

keywords = {Booleanization; uniform frame; uniform space; weakly open maps and homomorphisms; functoriality; Booleanization of frames; weakly open morphisms; uniform frames; reflection},

language = {eng},

number = {1},

pages = {135-146},

publisher = {Charles University in Prague, Faculty of Mathematics and Physics},

title = {Booleanization of uniform frames},

url = {http://eudml.org/doc/247936},

volume = {37},

year = {1996},

}

TY - JOUR

AU - Banaschewski, Bernhard

AU - Pultr, Aleš

TI - Booleanization of uniform frames

JO - Commentationes Mathematicae Universitatis Carolinae

PY - 1996

PB - Charles University in Prague, Faculty of Mathematics and Physics

VL - 37

IS - 1

SP - 135

EP - 146

AB - Booleanization of frames or uniform frames, which is not functorial under the basic choice of morphisms, becomes functorial in the categories with weakly open homomorphisms or weakly open uniform homomorphisms. Then, the construction becomes a reflection. In the uniform case, moreover, it also has a left adjoint. In connection with this, certain dual equivalences concerning uniform spaces and uniform frames arise.

LA - eng

KW - Booleanization; uniform frame; uniform space; weakly open maps and homomorphisms; functoriality; Booleanization of frames; weakly open morphisms; uniform frames; reflection

UR - http://eudml.org/doc/247936

ER -

## References

top- Banaschewski B., Compact regular frames and the Sikorski Theorem, Kyungpook J. Math. 28 (1988), 1-14. (1988) Zbl0676.03029MR0986848
- Banaschewski B., Pultr A., Samuel compactification and completion of uniform frames, Math. Proc. Cambridge Phil. Soc. 108 (1990), 63-78. (1990) Zbl0733.54020MR1049760
- Banaschewski B., Pultr A., A Stone duality for metric spaces, Canad. Math. Soc. Conf. Proceedings 13 (1992), 33-42. (1992) Zbl0789.54035MR1192138
- Banaschewski B., Pultr A., Variants of openness, Appl. Categ. Structures 2 (1994), 331-350. (1994) Zbl0810.54017MR1300720
- Banaschewski B., Pultr A., Booleanization, preprint. Zbl0848.06010MR1383446
- Glivenko V., Sur quelque points de la logique de M. Brouwer, Acad. Royal Belg. Bull. Sci. 15 (1929), 183-188. (1929)
- Herrlich H., Strecker G.E., H-closed spaces and reflective subcategories, Math. Annalen 177 (1968), 302-309. (1968) Zbl0157.29104MR0234427
- Isbell J.R., Atomless parts of spaces, Math. Scand. 31 (1972), 5-32. (1972) Zbl0246.54028MR0358725
- Johnstone P.T., Stone Spaces, Cambridge University Press, Cambridge, 1982. Zbl0586.54001MR0698074
- Johnstone P.T., Factorization theorems for geometric morphisms, II., Springer Lecture Notes in Math. 915 (1982), 216-233. (1982) Zbl0477.18006MR0659894
- Kříž I., A direct description of uniform completion in locales and a characterization of LT groups, Cahiers Top. et Géom. Diff. Cat. 27 (1986), 19-34. (1986) MR0845407
- Mioduszewski J., Rudolf L., H-closed and extremally disconnected Hausdorff spaces, Dissertationes Math. 66 (1969). (1969) Zbl0204.22404MR0256353
- Vickers S., Topology via Logic, Cambridge Tracts in Theor. Comp. Sci., Number 5, Cambridge University Press, Cambridge, 1985. Zbl0922.54002MR1002193

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.