H-closed and extremally disconnected Hausdorff spaces
- Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1969
Access Full Book
topAbstract
topHow to cite
topJ. Mioduszewski, and L. Rudolf. H-closed and extremally disconnected Hausdorff spaces. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1969. <http://eudml.org/doc/268441>.
@book{J1969,
abstract = {CONTENTSIntroduction.......................................................................................................................................................... 5I. PRELIMINARIES.............................................................................................................................................. 7§ 1. The closures of open subsets in r. o.-equivalent topologies............................................................. 7§ 2. The r. o.-maximal topologies.................................................................................................................... 9§ 3. The H-closed maximal spaces................................................................................................................ 10§ 4. R. o.-equivalence of extensions............................................................................................................... 10§ 5. 0-continuous maps.................................................................................................................................... 11§ 6. The Henriksen-Jerison and skeletal maps........................................................................................... 13II. H-CLOSED EXTENSIONS OF HAUSDORFF SPACES.................................................................................... 14§ 1. The set of 77-closed extensions of given Hausdorff space............................................................... 145 2. Proper maps................................................................................................................................................ 16§ 3. Decompositions of proper maps............................................................................................................ 18§ 4. An application to IT-closed extensions................................................................................................... 19§ 5. The case of compact-like spaces........................................................................................................... 22§ 6. The case of minimal Hausdorff spaces................................................................................................. 25III. EXTREMALLY DISCONNECTED RESOLUTIONS OF HAUSDORFF SPACES................................. 26§ 1. The set of irreducible maps onto a given Hausdorff space X............................................................ 26§ 2. R. o.-minimal irreducible maps............................................................................................................... 30§ 3. Extremally disconnected resolutions...................................................................................................... 31IV. COMMUTATION OF H-CLOSED EXTENSIONS AND E. D. RESOLUTIONS...................................... 35§ 1. Commutativity in a pullback diagram...................................................................................................... 35§ 2. Commutativity in a pushout diagram ..................................................................................................... 37V. PROJECTIVE AND INJECTIVE HAUSDORFF SPACES......................................................................... 39§ 1. H-closed projective spaces. A definition and motivations.................................................................. 41§ 2. The case of compact-like spaces........................................................................................................... 42§ 3. Projectiveness for arbitrary H-closed spaces....................................................................................... 44§ 4. Projectiveness for arbitrary Hausdorff spaces...................................................................................... 45§ 5. Injective extremally disconnected spaces............................................................................................. 46§ 6. Injective Hausdorff spaces....................................................................................................................... 48Bibliography......................................................................................................................................................... 51},
author = {J. Mioduszewski, L. Rudolf},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {H-closed and extremally disconnected Hausdorff spaces},
url = {http://eudml.org/doc/268441},
year = {1969},
}
TY - BOOK
AU - J. Mioduszewski
AU - L. Rudolf
TI - H-closed and extremally disconnected Hausdorff spaces
PY - 1969
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction.......................................................................................................................................................... 5I. PRELIMINARIES.............................................................................................................................................. 7§ 1. The closures of open subsets in r. o.-equivalent topologies............................................................. 7§ 2. The r. o.-maximal topologies.................................................................................................................... 9§ 3. The H-closed maximal spaces................................................................................................................ 10§ 4. R. o.-equivalence of extensions............................................................................................................... 10§ 5. 0-continuous maps.................................................................................................................................... 11§ 6. The Henriksen-Jerison and skeletal maps........................................................................................... 13II. H-CLOSED EXTENSIONS OF HAUSDORFF SPACES.................................................................................... 14§ 1. The set of 77-closed extensions of given Hausdorff space............................................................... 145 2. Proper maps................................................................................................................................................ 16§ 3. Decompositions of proper maps............................................................................................................ 18§ 4. An application to IT-closed extensions................................................................................................... 19§ 5. The case of compact-like spaces........................................................................................................... 22§ 6. The case of minimal Hausdorff spaces................................................................................................. 25III. EXTREMALLY DISCONNECTED RESOLUTIONS OF HAUSDORFF SPACES................................. 26§ 1. The set of irreducible maps onto a given Hausdorff space X............................................................ 26§ 2. R. o.-minimal irreducible maps............................................................................................................... 30§ 3. Extremally disconnected resolutions...................................................................................................... 31IV. COMMUTATION OF H-CLOSED EXTENSIONS AND E. D. RESOLUTIONS...................................... 35§ 1. Commutativity in a pullback diagram...................................................................................................... 35§ 2. Commutativity in a pushout diagram ..................................................................................................... 37V. PROJECTIVE AND INJECTIVE HAUSDORFF SPACES......................................................................... 39§ 1. H-closed projective spaces. A definition and motivations.................................................................. 41§ 2. The case of compact-like spaces........................................................................................................... 42§ 3. Projectiveness for arbitrary H-closed spaces....................................................................................... 44§ 4. Projectiveness for arbitrary Hausdorff spaces...................................................................................... 45§ 5. Injective extremally disconnected spaces............................................................................................. 46§ 6. Injective Hausdorff spaces....................................................................................................................... 48Bibliography......................................................................................................................................................... 51
LA - eng
UR - http://eudml.org/doc/268441
ER -
Citations in EuDML Documents
top- Taras Banakh, Andrzej Kucharski, Marta Martynenko, A spectral characterization of skeletal maps
- A. Bella, A. Błaszczyk, A. Szymański, On absolute retracts of ω*
- Bernhard Banaschewski, Aleš Pultr, Booleanization of uniform frames
- Melvin Henriksen, Jorge Martinez, Grant R. Woods, Spaces in which all prime -ideals of are minimal or maximal
- Andrzej Kucharski, Szymon Plewik, Vesko Valov, Skeletally Dugundji spaces
- B. Banaschewski, A. Pultr, Booleanization
- H. L. Bentley, Horst Herrlich, Completion as reflection
- Dragan S. Janković, Ch. Konstadilaki-Savvopoulou, On -continuous functions
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.