On Kurzweil-Henstock equiintegrable sequences
Mathematica Bohemica (1996)
- Volume: 121, Issue: 2, page 189-207
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topSchwabik, Štefan, and Vrkoč, Ivo. "On Kurzweil-Henstock equiintegrable sequences." Mathematica Bohemica 121.2 (1996): 189-207. <http://eudml.org/doc/247970>.
@article{Schwabik1996,
abstract = {For the Kurzweil-Henstock integral the equiintegrability of a pointwise convergent sequence of integrable functions implies the integrability of the limit function and the relation
m abfm(s)s = abm fm(s)s.
Conditions for the equiintegrability of a sequence of functions pointwise convergent to an integrable function are presented. These conditions are given in terms of convergence of some sequences of integrals.},
author = {Schwabik, Štefan, Vrkoč, Ivo},
journal = {Mathematica Bohemica},
keywords = {equiintegrable sequence; Kurzweil-Henstock integral; equiintegrable sequence; Kurzweil-Henstock integral},
language = {eng},
number = {2},
pages = {189-207},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On Kurzweil-Henstock equiintegrable sequences},
url = {http://eudml.org/doc/247970},
volume = {121},
year = {1996},
}
TY - JOUR
AU - Schwabik, Štefan
AU - Vrkoč, Ivo
TI - On Kurzweil-Henstock equiintegrable sequences
JO - Mathematica Bohemica
PY - 1996
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 121
IS - 2
SP - 189
EP - 207
AB - For the Kurzweil-Henstock integral the equiintegrability of a pointwise convergent sequence of integrable functions implies the integrability of the limit function and the relation
m abfm(s)s = abm fm(s)s.
Conditions for the equiintegrability of a sequence of functions pointwise convergent to an integrable function are presented. These conditions are given in terms of convergence of some sequences of integrals.
LA - eng
KW - equiintegrable sequence; Kurzweil-Henstock integral; equiintegrable sequence; Kurzweil-Henstock integral
UR - http://eudml.org/doc/247970
ER -
References
top- Gordon R. A., 10.2307/44152048, Real Analysis Exchange 15 (1989-90), 724-728. (1989) MR1059433DOI10.2307/44152048
- Gordon R. A., 10.1112/jlms/s2-44.2.301, J. London Math. Soc. 44 (1991), 301-309. (1991) MR1136442DOI10.1112/jlms/s2-44.2.301
- Gordon R. A., 10.1090/gsm/004/09, Graduate Studies in Math., Vol. 4, American Mathematical Society, 1994. (1994) Zbl0807.26004MR1288751DOI10.1090/gsm/004/09
- Henstock R., Lectures on the Theory of Integration, Series in Real Analysis, Vol. 1, World Scientific, Singapore, 1988. (1988) Zbl0668.28001MR0963249
- Kurzweil J., Nichtabsolut konvergente Integrale, Teubner-Texte zur Mathematik, Band 26, Teubner, Leipzig, 1980. (1980) Zbl0441.28001MR0597703
- Kurzweil J., Jarník J., Equiintegrability and controlled convergence of Perron-type integrable functions, Real Anal. Exchange П (1991-92), 110-139. (1991)
- Lee Peng Yee, Lanzhou Lectures on Henstock Integration, Series in Real Analysis, Vol. 2, World Scientific, Singapore, 1989. (1989) Zbl0699.26004MR1050957
- McLeod R. M., The Generalized Riemann Integral, Caгus Mathematical Monographs, No. 20, Mathematical Association of America, 1980. (1980) Zbl0486.26005MR0588510
- Schwabik Š., Generalized Ordinary Differential Equations, Series in Real Analysis, Vol. 5, World Scientific, Singapore, 1992. (1992) Zbl0781.34003MR1200241
- Schwabik Š., Convergence theorems for the Perron integral and Sklyarenko's condition, Comment. Math. Univ. Carolin. 33,2 (1992), 237-244. (1992) Zbl0774.26004MR1189654
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.