Role of the Harnack extension principle in the Kurzweil-Stieltjes integral

Umi Mahnuna Hanung

Mathematica Bohemica (2024)

  • Volume: 149, Issue: 3, page 337-363
  • ISSN: 0862-7959

Abstract

top
In the theories of integration and of ordinary differential and integral equations, convergence theorems provide one of the most widely used tools. Since the values of the Kurzweil-Stieltjes integrals over various kinds of bounded intervals having the same infimum and supremum need not coincide, the Harnack extension principle in the Kurzweil-Henstock integral, which is a key step to supply convergence theorems, cannot be easily extended to the Kurzweil-type Stieltjes integrals with discontinuous integrators. Moreover, in general, the existence of integral over an elementary set E does not always imply the existence of integral over every subset T of E . The goal of this paper is to construct the Harnack extension principle for the Kurzweil-Stieltjes integral with values in Banach spaces and then to demonstrate its role in guaranteeing the integrability over arbitrary subsets of elementary sets. New concepts of equiintegrability and equiregulatedness involving elementary sets are pivotal to the notion of the Harnack extension principle for the Kurzweil-Stieltjes integration.

How to cite

top

Hanung, Umi Mahnuna. "Role of the Harnack extension principle in the Kurzweil-Stieltjes integral." Mathematica Bohemica 149.3 (2024): 337-363. <http://eudml.org/doc/299481>.

@article{Hanung2024,
abstract = {In the theories of integration and of ordinary differential and integral equations, convergence theorems provide one of the most widely used tools. Since the values of the Kurzweil-Stieltjes integrals over various kinds of bounded intervals having the same infimum and supremum need not coincide, the Harnack extension principle in the Kurzweil-Henstock integral, which is a key step to supply convergence theorems, cannot be easily extended to the Kurzweil-type Stieltjes integrals with discontinuous integrators. Moreover, in general, the existence of integral over an elementary set $E$ does not always imply the existence of integral over every subset $T$ of $E.$ The goal of this paper is to construct the Harnack extension principle for the Kurzweil-Stieltjes integral with values in Banach spaces and then to demonstrate its role in guaranteeing the integrability over arbitrary subsets of elementary sets. New concepts of equiintegrability and equiregulatedness involving elementary sets are pivotal to the notion of the Harnack extension principle for the Kurzweil-Stieltjes integration.},
author = {Hanung, Umi Mahnuna},
journal = {Mathematica Bohemica},
keywords = {Kurzweil-Stieltjes integral; integral over arbitrary bounded sets; equiintegrability; equiregulatedness; convergence theorem; Harnack extension principle},
language = {eng},
number = {3},
pages = {337-363},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Role of the Harnack extension principle in the Kurzweil-Stieltjes integral},
url = {http://eudml.org/doc/299481},
volume = {149},
year = {2024},
}

TY - JOUR
AU - Hanung, Umi Mahnuna
TI - Role of the Harnack extension principle in the Kurzweil-Stieltjes integral
JO - Mathematica Bohemica
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 149
IS - 3
SP - 337
EP - 363
AB - In the theories of integration and of ordinary differential and integral equations, convergence theorems provide one of the most widely used tools. Since the values of the Kurzweil-Stieltjes integrals over various kinds of bounded intervals having the same infimum and supremum need not coincide, the Harnack extension principle in the Kurzweil-Henstock integral, which is a key step to supply convergence theorems, cannot be easily extended to the Kurzweil-type Stieltjes integrals with discontinuous integrators. Moreover, in general, the existence of integral over an elementary set $E$ does not always imply the existence of integral over every subset $T$ of $E.$ The goal of this paper is to construct the Harnack extension principle for the Kurzweil-Stieltjes integral with values in Banach spaces and then to demonstrate its role in guaranteeing the integrability over arbitrary subsets of elementary sets. New concepts of equiintegrability and equiregulatedness involving elementary sets are pivotal to the notion of the Harnack extension principle for the Kurzweil-Stieltjes integration.
LA - eng
KW - Kurzweil-Stieltjes integral; integral over arbitrary bounded sets; equiintegrability; equiregulatedness; convergence theorem; Harnack extension principle
UR - http://eudml.org/doc/299481
ER -

References

top
  1. Arredondo, J. H., Bernal, M., Morales, M. G., 10.3390/math8071199, Mathematics 8 (2020), Article ID 1199, 16 pages. (2020) DOI10.3390/math8071199
  2. Bartle, R. G., 10.2307/44152472, Real Anal. Exch. 20 (1994/1995), 119-124. (1994) Zbl0828.26006MR1313676DOI10.2307/44152472
  3. Bartle, R. G., 10.1090/gsm/032, Graduate Studies in Mathematics 32. AMS, Providence (2001). (2001) Zbl0968.26001MR1817647DOI10.1090/gsm/032
  4. Bongiorno, B., Piazza, L. Di, 10.2307/44152212, Real Anal. Exch. 17 (1991/1992), 339-361. (1991) Zbl0758.26006MR1147373DOI10.2307/44152212
  5. Bonotto, E. M., Federson, M., (eds.), J. G. Mesquita, 10.1002/9781119655022, John Wiley & Sons, Hoboken (2021). (2021) Zbl1475.34001MR4485099DOI10.1002/9781119655022
  6. Cao, S. S., The Henstock integral for Banach-valued functions, Southeast Asian Bull. Math. 16 (1992), 35-40. (1992) Zbl0749.28007MR1173605
  7. Caponetti, D., Cichoń, M., Marraffa, V., 10.1007/s40314-019-0927-0, Comput. Appl. Math. 38 (2019), Article ID 172, 20 pages. (2019) Zbl1438.34219MR4017897DOI10.1007/s40314-019-0927-0
  8. Carl, S., Heikkilä, S., 10.1007/978-1-4419-7585-0, Springer, New York (2011). (2011) Zbl1209.47001MR2760654DOI10.1007/978-1-4419-7585-0
  9. Cousin, P., 10.1007/BF02402869, Acta Math. 19 (1895), 1-62 French 9999JFM99999 26.0456.02. (1895) MR1554861DOI10.1007/BF02402869
  10. Federson, M., Mawhin, J., Mesquita, C., 10.1016/j.bulsci.2021.102991, Bull. Sci. Math. 169 (2021), Article ID 102991, 31 pages. (2021) Zbl1471.34011MR4253257DOI10.1016/j.bulsci.2021.102991
  11. Fraňková, D., 10.21136/MB.1991.126195, Math. Bohem. 116 (1991), 20-59. (1991) Zbl0724.26009MR1100424DOI10.21136/MB.1991.126195
  12. Gordon, R. A., 10.2307/44152048, Real Anal. Exch. 15 (1989/1990), 724-728. (1989) Zbl0708.26005MR1059433DOI10.2307/44152048
  13. Gordon, R. A., 10.1090/gsm/004, Graduate Studies in Mathematics 4. AMS, Providence (1994). (1994) Zbl0807.26004MR1288751DOI10.1090/gsm/004
  14. Hanung, U. M., Tvrdý, M., 10.21136/MB.2019.0015-19, Math. Bohem. 144 (2019), 357-372. (2019) Zbl07217260MR4047342DOI10.21136/MB.2019.0015-19
  15. Henstock, R., 10.1142/0510, Series in Real Analysis 1. World Scientific, Singapore (1988). (1988) Zbl0668.28001MR0963249DOI10.1142/0510
  16. Hildebrandt, T. H., Introduction to the Theory of Integration, Pure and Applied Mathematics 13. Academic Press, New York (1963). (1963) Zbl0112.28302MR0154957
  17. Hönig, C. S., Volterra Stieltjes-Integral Equations: Functional Analytic Methods, Linear Constraints, North-Holland Mathematics Studies 16. Notas de Mathematica 56. North-Holland, Amsterdam (1975). (1975) Zbl0307.45002MR0499969
  18. Krejčí, P., Lamba, H., Monteiro, G. A., Rachinskii, D., 10.21136/MB.2016.18, Math. Bohem. 141 (2016), 261-286. (2016) Zbl1389.34140MR3499787DOI10.21136/MB.2016.18
  19. Kubota, Y., 10.2748/tmj/1178244433, Tohoku Math. J., II. Ser. 12 (1960), 171-174. (1960) Zbl0109.28002MR121461DOI10.2748/tmj/1178244433
  20. Kurtz, D. S., Swartz, C. W., 10.1142/8291, Series in Real Analysis 13. World Scientific, Hackensack (2012). (2012) Zbl1263.26019MR2894455DOI10.1142/8291
  21. Kurzweil, J., 10.21136/CMJ.1957.100258, Czech. Math. J. 7 (1957), 418-449. (1957) Zbl0090.30002MR0111875DOI10.21136/CMJ.1957.100258
  22. Kurzweil, J., Nichtabsolut konvergente Integrale, Teubner-Texte zur Mathematik 26. B. G. Teubner, Leipzig (1980), German. (1980) Zbl0441.28001MR0597703
  23. Kurzweil, J., 10.1142/4333, Series in Real Analysis 7. World Scientific, Singapore (2000). (2000) Zbl0954.28001MR1763305DOI10.1142/4333
  24. Kurzweil, J., 10.1142/7907, Series in Real Analysis 11. World Scientific, Hackensack (2012). (2012) Zbl1248.34001MR2906899DOI10.1142/7907
  25. Kurzweil, J., Jarník, J., 10.2307/44152200, Real Anal. Exch. 17 (1991/1992), 110-139. (1991) Zbl0754.26003MR1147361DOI10.2307/44152200
  26. Lee, P.-Y., 10.1142/0845, Series in Real Analysis 2. World Scientific, London (1989). (1989) Zbl0699.26004MR1050957DOI10.1142/0845
  27. Lee, P. Y., Harnack Extension for the Henstock integral in the Euclidean space, J. Math. Study 27 (1994), 5-8. (1994) Zbl0927.26014MR1318250
  28. Lee, T. Y., 10.1142/7933, Series in Real Analysis 12. World Scientific, Hackensack (2011). (2011) Zbl1246.26002MR2789724DOI10.1142/7933
  29. Liu, W., Krejčí, P., Ye, G., 10.3934/dcdsb.2017190, Discrete Contin. Dyn. Syst., Ser. B 22 (2017), 3783-3795. (2017) Zbl1375.34073MR3693841DOI10.3934/dcdsb.2017190
  30. Albés, I. Márquez, Slavík, A., Tvrdý, M., 10.1016/j.jmaa.2022.126789, J. Math. Anal. Appl. 519 (2023), Article ID 126789, 52 pages. (2023) Zbl07616180MR4499373DOI10.1016/j.jmaa.2022.126789
  31. Monteiro, G. A., 10.21136/MB.2019.0041-19, Math. Bohem. 144 (2019), 423-436. (2019) Zbl1499.26024MR4047345DOI10.21136/MB.2019.0041-19
  32. Monteiro, G. A., Hanung, U. M., Tvrdý, M., 10.1007/s00605-015-0774-z, Monatsh. Math. 180 (2016), 409-434. (2016) Zbl1355.26008MR3513214DOI10.1007/s00605-015-0774-z
  33. Monteiro, G. A., Slavík, A., Tvrdý, M., 10.1142/9432, Series in Real Analysis 15. World Scientific, Hackensack (2019). (2019) Zbl1437.28001MR3839599DOI10.1142/9432
  34. Monteiro, G. A., Tvrdý, M., 10.21136/MB.2012.142992, Math. Bohem. 137 (2012), 365-381. (2012) Zbl1274.26014MR3058269DOI10.21136/MB.2012.142992
  35. Monteiro, G. A., Tvrdý, M., 10.3934/dcds.2013.33.283, Discrete Contin. Dyn. Syst. 33 (2013), 283-303. (2013) Zbl1268.45009MR2972960DOI10.3934/dcds.2013.33.283
  36. Ng, W. L., 10.1142/10489, Series in Real Analysis 14. World Scientific, Hackensack (2018). (2018) Zbl1392.28001MR3752602DOI10.1142/10489
  37. Pfeffer, W. F., The Riemann Approach to Integration: Local Geometric Theory, Cambridge Tracts in Mathematics 109. Cambridge University Press, Cambridge (1993). (1993) Zbl0804.26005MR1268404
  38. Saks, S., Theory of the Integral, Monografie Matematyczne 7. G. E. Stechert & Co., New York (1937). (1937) Zbl0017.30004MR0167578
  39. Sánchez-Perales, S., Mendoza-Torres, F. J., 10.21136/CMJ.2019.0388-18, Czech. Math. J. 70 (2020), 519-537. (2020) Zbl07217149MR4111857DOI10.21136/CMJ.2019.0388-18
  40. Sánchez-Perales, S., Pérez-Becerra, T., Vázquez-Hipólito, V., Oliveros-Oliveros, J. J. O., 10.3390/math9121403, Mathematics 9 (2021), Article ID 1403, 20 pages. (2021) DOI10.3390/math9121403
  41. Schwabik, Š., 10.1142/1875, Series in Real Analysis 5. World Scientific, Singapore (1992). (1992) Zbl0781.34003MR1200241DOI10.1142/1875
  42. Schwabik, Š., 10.21136/MB.1996.126036, Math. Bohem. 121 (1996), 425-447. (1996) Zbl0879.28021MR1428144DOI10.21136/MB.1996.126036
  43. Schwabik, Š., 10.21136/MB.1999.125994, Math. Bohem. 124 (1999), 433-457. (1999) Zbl0937.34047MR1722877DOI10.21136/MB.1999.125994
  44. Schwabik, Š., 10.21136/MB.2001.134198, Math. Bohem. 126 (2001), 613-629. (2001) Zbl0980.26005MR1970264DOI10.21136/MB.2001.134198
  45. Schwabik, Š., Tvrdý, M., Vejvoda, O., Differential and Integral Equations: Boundary Value Problems and Adjoints, Academia and D. Reidel, Praha and Dordrecht (1979). (1979) Zbl0417.45001MR0542283
  46. Schwabik, Š., Vrkoč, I., 10.21136/MB.1996.126102, Math. Bohem. 121 (1996), 189-207. (1996) Zbl0863.26009MR1400612DOI10.21136/MB.1996.126102
  47. Schwabik, Š., Ye, G., 10.1142/5905, Series in Real Analysis 10. World Scientific, Hackensack (2005). (2005) Zbl1088.28008MR2167754DOI10.1142/5905
  48. Slavík, A., 10.1007/s00025-022-01816-z, Result. Math. 78 (2023), Article ID 40, 28 pages. (2023) Zbl1507.45004MR4523289DOI10.1007/s00025-022-01816-z
  49. Stieltjes, T. J., 10.5802/afst.808, Ann. Fac. Sci. Toulouse, VI. Sér., Math. 4 (1995), J76--J122 French. (1995) Zbl0861.01036MR1607517DOI10.5802/afst.808
  50. Trench, W. F., Introduction to Real Analysis, Prentice Hall, Upper Saddle River (2003). (2003) Zbl1204.00023
  51. Tvrdý, M., 10.21136/CPM.1989.108713, Čas. Pěstování Mat. 114 (1989), 187-209. (1989) Zbl0671.26006MR1063765DOI10.21136/CPM.1989.108713

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.