Role of the Harnack extension principle in the Kurzweil-Stieltjes integral
Mathematica Bohemica (2024)
- Volume: 149, Issue: 3, page 337-363
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topHanung, Umi Mahnuna. "Role of the Harnack extension principle in the Kurzweil-Stieltjes integral." Mathematica Bohemica 149.3 (2024): 337-363. <http://eudml.org/doc/299481>.
@article{Hanung2024,
abstract = {In the theories of integration and of ordinary differential and integral equations, convergence theorems provide one of the most widely used tools. Since the values of the Kurzweil-Stieltjes integrals over various kinds of bounded intervals having the same infimum and supremum need not coincide, the Harnack extension principle in the Kurzweil-Henstock integral, which is a key step to supply convergence theorems, cannot be easily extended to the Kurzweil-type Stieltjes integrals with discontinuous integrators. Moreover, in general, the existence of integral over an elementary set $E$ does not always imply the existence of integral over every subset $T$ of $E.$ The goal of this paper is to construct the Harnack extension principle for the Kurzweil-Stieltjes integral with values in Banach spaces and then to demonstrate its role in guaranteeing the integrability over arbitrary subsets of elementary sets. New concepts of equiintegrability and equiregulatedness involving elementary sets are pivotal to the notion of the Harnack extension principle for the Kurzweil-Stieltjes integration.},
author = {Hanung, Umi Mahnuna},
journal = {Mathematica Bohemica},
keywords = {Kurzweil-Stieltjes integral; integral over arbitrary bounded sets; equiintegrability; equiregulatedness; convergence theorem; Harnack extension principle},
language = {eng},
number = {3},
pages = {337-363},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Role of the Harnack extension principle in the Kurzweil-Stieltjes integral},
url = {http://eudml.org/doc/299481},
volume = {149},
year = {2024},
}
TY - JOUR
AU - Hanung, Umi Mahnuna
TI - Role of the Harnack extension principle in the Kurzweil-Stieltjes integral
JO - Mathematica Bohemica
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 149
IS - 3
SP - 337
EP - 363
AB - In the theories of integration and of ordinary differential and integral equations, convergence theorems provide one of the most widely used tools. Since the values of the Kurzweil-Stieltjes integrals over various kinds of bounded intervals having the same infimum and supremum need not coincide, the Harnack extension principle in the Kurzweil-Henstock integral, which is a key step to supply convergence theorems, cannot be easily extended to the Kurzweil-type Stieltjes integrals with discontinuous integrators. Moreover, in general, the existence of integral over an elementary set $E$ does not always imply the existence of integral over every subset $T$ of $E.$ The goal of this paper is to construct the Harnack extension principle for the Kurzweil-Stieltjes integral with values in Banach spaces and then to demonstrate its role in guaranteeing the integrability over arbitrary subsets of elementary sets. New concepts of equiintegrability and equiregulatedness involving elementary sets are pivotal to the notion of the Harnack extension principle for the Kurzweil-Stieltjes integration.
LA - eng
KW - Kurzweil-Stieltjes integral; integral over arbitrary bounded sets; equiintegrability; equiregulatedness; convergence theorem; Harnack extension principle
UR - http://eudml.org/doc/299481
ER -
References
top- Arredondo, J. H., Bernal, M., Morales, M. G., 10.3390/math8071199, Mathematics 8 (2020), Article ID 1199, 16 pages. (2020) DOI10.3390/math8071199
- Bartle, R. G., 10.2307/44152472, Real Anal. Exch. 20 (1994/1995), 119-124. (1994) Zbl0828.26006MR1313676DOI10.2307/44152472
- Bartle, R. G., 10.1090/gsm/032, Graduate Studies in Mathematics 32. AMS, Providence (2001). (2001) Zbl0968.26001MR1817647DOI10.1090/gsm/032
- Bongiorno, B., Piazza, L. Di, 10.2307/44152212, Real Anal. Exch. 17 (1991/1992), 339-361. (1991) Zbl0758.26006MR1147373DOI10.2307/44152212
- Bonotto, E. M., Federson, M., (eds.), J. G. Mesquita, 10.1002/9781119655022, John Wiley & Sons, Hoboken (2021). (2021) Zbl1475.34001MR4485099DOI10.1002/9781119655022
- Cao, S. S., The Henstock integral for Banach-valued functions, Southeast Asian Bull. Math. 16 (1992), 35-40. (1992) Zbl0749.28007MR1173605
- Caponetti, D., Cichoń, M., Marraffa, V., 10.1007/s40314-019-0927-0, Comput. Appl. Math. 38 (2019), Article ID 172, 20 pages. (2019) Zbl1438.34219MR4017897DOI10.1007/s40314-019-0927-0
- Carl, S., Heikkilä, S., 10.1007/978-1-4419-7585-0, Springer, New York (2011). (2011) Zbl1209.47001MR2760654DOI10.1007/978-1-4419-7585-0
- Cousin, P., 10.1007/BF02402869, Acta Math. 19 (1895), 1-62 French 9999JFM99999 26.0456.02. (1895) MR1554861DOI10.1007/BF02402869
- Federson, M., Mawhin, J., Mesquita, C., 10.1016/j.bulsci.2021.102991, Bull. Sci. Math. 169 (2021), Article ID 102991, 31 pages. (2021) Zbl1471.34011MR4253257DOI10.1016/j.bulsci.2021.102991
- Fraňková, D., 10.21136/MB.1991.126195, Math. Bohem. 116 (1991), 20-59. (1991) Zbl0724.26009MR1100424DOI10.21136/MB.1991.126195
- Gordon, R. A., 10.2307/44152048, Real Anal. Exch. 15 (1989/1990), 724-728. (1989) Zbl0708.26005MR1059433DOI10.2307/44152048
- Gordon, R. A., 10.1090/gsm/004, Graduate Studies in Mathematics 4. AMS, Providence (1994). (1994) Zbl0807.26004MR1288751DOI10.1090/gsm/004
- Hanung, U. M., Tvrdý, M., 10.21136/MB.2019.0015-19, Math. Bohem. 144 (2019), 357-372. (2019) Zbl07217260MR4047342DOI10.21136/MB.2019.0015-19
- Henstock, R., 10.1142/0510, Series in Real Analysis 1. World Scientific, Singapore (1988). (1988) Zbl0668.28001MR0963249DOI10.1142/0510
- Hildebrandt, T. H., Introduction to the Theory of Integration, Pure and Applied Mathematics 13. Academic Press, New York (1963). (1963) Zbl0112.28302MR0154957
- Hönig, C. S., Volterra Stieltjes-Integral Equations: Functional Analytic Methods, Linear Constraints, North-Holland Mathematics Studies 16. Notas de Mathematica 56. North-Holland, Amsterdam (1975). (1975) Zbl0307.45002MR0499969
- Krejčí, P., Lamba, H., Monteiro, G. A., Rachinskii, D., 10.21136/MB.2016.18, Math. Bohem. 141 (2016), 261-286. (2016) Zbl1389.34140MR3499787DOI10.21136/MB.2016.18
- Kubota, Y., 10.2748/tmj/1178244433, Tohoku Math. J., II. Ser. 12 (1960), 171-174. (1960) Zbl0109.28002MR121461DOI10.2748/tmj/1178244433
- Kurtz, D. S., Swartz, C. W., 10.1142/8291, Series in Real Analysis 13. World Scientific, Hackensack (2012). (2012) Zbl1263.26019MR2894455DOI10.1142/8291
- Kurzweil, J., 10.21136/CMJ.1957.100258, Czech. Math. J. 7 (1957), 418-449. (1957) Zbl0090.30002MR0111875DOI10.21136/CMJ.1957.100258
- Kurzweil, J., Nichtabsolut konvergente Integrale, Teubner-Texte zur Mathematik 26. B. G. Teubner, Leipzig (1980), German. (1980) Zbl0441.28001MR0597703
- Kurzweil, J., 10.1142/4333, Series in Real Analysis 7. World Scientific, Singapore (2000). (2000) Zbl0954.28001MR1763305DOI10.1142/4333
- Kurzweil, J., 10.1142/7907, Series in Real Analysis 11. World Scientific, Hackensack (2012). (2012) Zbl1248.34001MR2906899DOI10.1142/7907
- Kurzweil, J., Jarník, J., 10.2307/44152200, Real Anal. Exch. 17 (1991/1992), 110-139. (1991) Zbl0754.26003MR1147361DOI10.2307/44152200
- Lee, P.-Y., 10.1142/0845, Series in Real Analysis 2. World Scientific, London (1989). (1989) Zbl0699.26004MR1050957DOI10.1142/0845
- Lee, P. Y., Harnack Extension for the Henstock integral in the Euclidean space, J. Math. Study 27 (1994), 5-8. (1994) Zbl0927.26014MR1318250
- Lee, T. Y., 10.1142/7933, Series in Real Analysis 12. World Scientific, Hackensack (2011). (2011) Zbl1246.26002MR2789724DOI10.1142/7933
- Liu, W., Krejčí, P., Ye, G., 10.3934/dcdsb.2017190, Discrete Contin. Dyn. Syst., Ser. B 22 (2017), 3783-3795. (2017) Zbl1375.34073MR3693841DOI10.3934/dcdsb.2017190
- Albés, I. Márquez, Slavík, A., Tvrdý, M., 10.1016/j.jmaa.2022.126789, J. Math. Anal. Appl. 519 (2023), Article ID 126789, 52 pages. (2023) Zbl07616180MR4499373DOI10.1016/j.jmaa.2022.126789
- Monteiro, G. A., 10.21136/MB.2019.0041-19, Math. Bohem. 144 (2019), 423-436. (2019) Zbl1499.26024MR4047345DOI10.21136/MB.2019.0041-19
- Monteiro, G. A., Hanung, U. M., Tvrdý, M., 10.1007/s00605-015-0774-z, Monatsh. Math. 180 (2016), 409-434. (2016) Zbl1355.26008MR3513214DOI10.1007/s00605-015-0774-z
- Monteiro, G. A., Slavík, A., Tvrdý, M., 10.1142/9432, Series in Real Analysis 15. World Scientific, Hackensack (2019). (2019) Zbl1437.28001MR3839599DOI10.1142/9432
- Monteiro, G. A., Tvrdý, M., 10.21136/MB.2012.142992, Math. Bohem. 137 (2012), 365-381. (2012) Zbl1274.26014MR3058269DOI10.21136/MB.2012.142992
- Monteiro, G. A., Tvrdý, M., 10.3934/dcds.2013.33.283, Discrete Contin. Dyn. Syst. 33 (2013), 283-303. (2013) Zbl1268.45009MR2972960DOI10.3934/dcds.2013.33.283
- Ng, W. L., 10.1142/10489, Series in Real Analysis 14. World Scientific, Hackensack (2018). (2018) Zbl1392.28001MR3752602DOI10.1142/10489
- Pfeffer, W. F., The Riemann Approach to Integration: Local Geometric Theory, Cambridge Tracts in Mathematics 109. Cambridge University Press, Cambridge (1993). (1993) Zbl0804.26005MR1268404
- Saks, S., Theory of the Integral, Monografie Matematyczne 7. G. E. Stechert & Co., New York (1937). (1937) Zbl0017.30004MR0167578
- Sánchez-Perales, S., Mendoza-Torres, F. J., 10.21136/CMJ.2019.0388-18, Czech. Math. J. 70 (2020), 519-537. (2020) Zbl07217149MR4111857DOI10.21136/CMJ.2019.0388-18
- Sánchez-Perales, S., Pérez-Becerra, T., Vázquez-Hipólito, V., Oliveros-Oliveros, J. J. O., 10.3390/math9121403, Mathematics 9 (2021), Article ID 1403, 20 pages. (2021) DOI10.3390/math9121403
- Schwabik, Š., 10.1142/1875, Series in Real Analysis 5. World Scientific, Singapore (1992). (1992) Zbl0781.34003MR1200241DOI10.1142/1875
- Schwabik, Š., 10.21136/MB.1996.126036, Math. Bohem. 121 (1996), 425-447. (1996) Zbl0879.28021MR1428144DOI10.21136/MB.1996.126036
- Schwabik, Š., 10.21136/MB.1999.125994, Math. Bohem. 124 (1999), 433-457. (1999) Zbl0937.34047MR1722877DOI10.21136/MB.1999.125994
- Schwabik, Š., 10.21136/MB.2001.134198, Math. Bohem. 126 (2001), 613-629. (2001) Zbl0980.26005MR1970264DOI10.21136/MB.2001.134198
- Schwabik, Š., Tvrdý, M., Vejvoda, O., Differential and Integral Equations: Boundary Value Problems and Adjoints, Academia and D. Reidel, Praha and Dordrecht (1979). (1979) Zbl0417.45001MR0542283
- Schwabik, Š., Vrkoč, I., 10.21136/MB.1996.126102, Math. Bohem. 121 (1996), 189-207. (1996) Zbl0863.26009MR1400612DOI10.21136/MB.1996.126102
- Schwabik, Š., Ye, G., 10.1142/5905, Series in Real Analysis 10. World Scientific, Hackensack (2005). (2005) Zbl1088.28008MR2167754DOI10.1142/5905
- Slavík, A., 10.1007/s00025-022-01816-z, Result. Math. 78 (2023), Article ID 40, 28 pages. (2023) Zbl1507.45004MR4523289DOI10.1007/s00025-022-01816-z
- Stieltjes, T. J., 10.5802/afst.808, Ann. Fac. Sci. Toulouse, VI. Sér., Math. 4 (1995), J76--J122 French. (1995) Zbl0861.01036MR1607517DOI10.5802/afst.808
- Trench, W. F., Introduction to Real Analysis, Prentice Hall, Upper Saddle River (2003). (2003) Zbl1204.00023
- Tvrdý, M., 10.21136/CPM.1989.108713, Čas. Pěstování Mat. 114 (1989), 187-209. (1989) Zbl0671.26006MR1063765DOI10.21136/CPM.1989.108713
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.