Generating functions and Bézoutians

Vlastimil Pták

Mathematica Bohemica (1996)

  • Volume: 121, Issue: 2, page 183-188
  • ISSN: 0862-7959

Abstract

top
Using the idea of the generating function of a matrix in an extended sense we establish a Bezoutian type formula for a matrix M satisfying an intertwining relation of the form M A T = A M . In the particular case of classical generating functions this formula gives a simple proof of Lander’s theorem on the inverse of a Hankel matrix.

How to cite

top

Pták, Vlastimil. "Generating functions and Bézoutians." Mathematica Bohemica 121.2 (1996): 183-188. <http://eudml.org/doc/247972>.

@article{Pták1996,
abstract = {Using the idea of the generating function of a matrix in an extended sense we establish a Bezoutian type formula for a matrix $M$ satisfying an intertwining relation of the form $M A^T = A M$. In the particular case of classical generating functions this formula gives a simple proof of Lander’s theorem on the inverse of a Hankel matrix.},
author = {Pták, Vlastimil},
journal = {Mathematica Bohemica},
keywords = {generating function; Bézoutian; Hankel matrix; generating function; Bézoutian; Hankel matrix},
language = {eng},
number = {2},
pages = {183-188},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Generating functions and Bézoutians},
url = {http://eudml.org/doc/247972},
volume = {121},
year = {1996},
}

TY - JOUR
AU - Pták, Vlastimil
TI - Generating functions and Bézoutians
JO - Mathematica Bohemica
PY - 1996
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 121
IS - 2
SP - 183
EP - 188
AB - Using the idea of the generating function of a matrix in an extended sense we establish a Bezoutian type formula for a matrix $M$ satisfying an intertwining relation of the form $M A^T = A M$. In the particular case of classical generating functions this formula gives a simple proof of Lander’s theorem on the inverse of a Hankel matrix.
LA - eng
KW - generating function; Bézoutian; Hankel matrix; generating function; Bézoutian; Hankel matrix
UR - http://eudml.org/doc/247972
ER -

References

top
  1. A. Fiedler V. Pták, 10.1016/0024-3795(87)90287-4, Lin. Algebra Appl. 86 (1987), 53-74. (1987) MR0870932DOI10.1016/0024-3795(87)90287-4
  2. G. Heinig K. Rost, Algebraic Methods for Toeplitz-like matrices and operators, Akademie-Verlag Berlin (1984). (1984) MR0782105
  3. F. I. Lander, The Bezoutian and the inversion of Hankel and Toeplitz matrices, Matem. Issled. Kishinev 9 (1974), 69-87. (In Russian.) (1974) MR0437559
  4. V. Pták, 10.1016/0024-3795(92)90270-K, Lin. Algebra Appl. 166 (1992), 65-95. (1992) MR1152488DOI10.1016/0024-3795(92)90270-K
  5. O. Taussky H. Zassenhaus, 10.2140/pjm.1959.9.893, Pacific J. Math. 9 (1959), 893-896. (1959) MR0108500DOI10.2140/pjm.1959.9.893

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.