Locally inner derivations of standard operator algebras

Lajos Molnár

Mathematica Bohemica (1996)

  • Volume: 121, Issue: 1, page 1-7
  • ISSN: 0862-7959

Abstract

top
It is proved that every locally inner derivation on a symmetric norm ideal of operators is an inner derivation.

How to cite

top

Molnár, Lajos. "Locally inner derivations of standard operator algebras." Mathematica Bohemica 121.1 (1996): 1-7. <http://eudml.org/doc/247986>.

@article{Molnár1996,
abstract = {It is proved that every locally inner derivation on a symmetric norm ideal of operators is an inner derivation.},
author = {Molnár, Lajos},
journal = {Mathematica Bohemica},
keywords = {local derivation; standard operator algebra; locally inner derivation; symmetric norm ideal; local derivation; standard operator algebra},
language = {eng},
number = {1},
pages = {1-7},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Locally inner derivations of standard operator algebras},
url = {http://eudml.org/doc/247986},
volume = {121},
year = {1996},
}

TY - JOUR
AU - Molnár, Lajos
TI - Locally inner derivations of standard operator algebras
JO - Mathematica Bohemica
PY - 1996
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 121
IS - 1
SP - 1
EP - 7
AB - It is proved that every locally inner derivation on a symmetric norm ideal of operators is an inner derivation.
LA - eng
KW - local derivation; standard operator algebra; locally inner derivation; symmetric norm ideal; local derivation; standard operator algebra
UR - http://eudml.org/doc/247986
ER -

References

top
  1. M. Brešar, P. Šemrl, 10.4153/CJM-1993-025-4, Canad. J. Math. 45 (1993), 483-496. (1993) MR1222512DOI10.4153/CJM-1993-025-4
  2. P. R. Chernoff, Representations, automorphisms and derivations of some operator algebras, J. Funct. Anal. 12 (1973), 275-289. (1973) Zbl0252.46086MR0350442
  3. C. K. Fong C. R. Miers, A. R. Sourour, 10.1090/S0002-9939-1982-0643740-0, Proc. Amer. Math. Soc. 84 (1982), 516-520. (1982) MR0643740DOI10.1090/S0002-9939-1982-0643740-0
  4. P. R. Halmos, Hilbert Space Problem Book, D. Van Nostrand Company, Princeton, New York, 1967. (1967) Zbl0144.38704MR0208368
  5. R. V. Kadison, 10.1016/0021-8693(90)90095-6, J. Algebra 130 (1990), 494-509. (1990) Zbl0751.46041MR1051316DOI10.1016/0021-8693(90)90095-6
  6. D. R. Larson, A. R. Sourour, Local derivations and local automorphisms of B(X), Proc. Sympos. Pure Math. 51. Part 2, Providence, Rhode Island 1990, pp. 187-194. (1990) MR1077437
  7. S. Sakai, 10.2307/1970432, Ann. Math. 83 (1966), 273-279. (1966) MR0193528DOI10.2307/1970432
  8. P. Šemrl, 10.1215/ijm/1255987893, Illinois J. Math. 35 (1991), 234-240. (1991) MR1091440DOI10.1215/ijm/1255987893
  9. P. Šemrl, 10.1006/jfan.1993.1035, J. Funct. Anal. 112 (1993), 318-324. (1993) MR1213141DOI10.1006/jfan.1993.1035
  10. B. Simon, Trace Ideals and Their Applications, Cambridge University Press, Cambridge, 1979. (1979) Zbl0423.47001MR0541149

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.