Non-vanishing of n -th derivatives of twisted elliptic L -functions in the critical point

Jacek Pomykała

Journal de théorie des nombres de Bordeaux (1997)

  • Volume: 9, Issue: 1, page 1-10
  • ISSN: 1246-7405

Abstract

top
Let E be a modular elliptic curve over L ( n ) ( s , E ) denote the n -th derivative of its Hasse-Weil L -series. We estimate the number of twisted elliptic curves E d , d D such that L ( n ) ( 1 , E d ) 0 .

How to cite

top

Pomykała, Jacek. "Non-vanishing of $n$-th derivatives of twisted elliptic $L$-functions in the critical point." Journal de théorie des nombres de Bordeaux 9.1 (1997): 1-10. <http://eudml.org/doc/248001>.

@article{Pomykała1997,
abstract = {Let $E$ be a modular elliptic curve over $\mathbb \{Q\}$$L^\{(n)\}(s, E)$ denote the $n$-th derivative of its Hasse-Weil $L$-series. We estimate the number of twisted elliptic curves $E_d, d \le D$ such that $L^\{(n)\} (1, E_d) \ne 0$.},
author = {Pomykała, Jacek},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {non-vanishing; -th derivatives; twisted elliptic -functions; twist; modular elliptic curve; zeta function},
language = {eng},
number = {1},
pages = {1-10},
publisher = {Université Bordeaux I},
title = {Non-vanishing of $n$-th derivatives of twisted elliptic $L$-functions in the critical point},
url = {http://eudml.org/doc/248001},
volume = {9},
year = {1997},
}

TY - JOUR
AU - Pomykała, Jacek
TI - Non-vanishing of $n$-th derivatives of twisted elliptic $L$-functions in the critical point
JO - Journal de théorie des nombres de Bordeaux
PY - 1997
PB - Université Bordeaux I
VL - 9
IS - 1
SP - 1
EP - 10
AB - Let $E$ be a modular elliptic curve over $\mathbb {Q}$$L^{(n)}(s, E)$ denote the $n$-th derivative of its Hasse-Weil $L$-series. We estimate the number of twisted elliptic curves $E_d, d \le D$ such that $L^{(n)} (1, E_d) \ne 0$.
LA - eng
KW - non-vanishing; -th derivatives; twisted elliptic -functions; twist; modular elliptic curve; zeta function
UR - http://eudml.org/doc/248001
ER -

References

top
  1. [B-S] B. Birch and H. Swinnerton-Dyer, Elliptic curves and modular functions, in Modular functions of one variable IV, Lecture Notes in Mathematics, Springer-Verlag, vol. 476, 1975, pp. 2-32. Zbl1214.11081MR384813
  2. [B-F-H] D. Bump, S. Friedberg and H. Hoffstein, Non-vanishing theorems for L- functions of modular forms and their derivatives, Invent. Math.102 (1990), 543-618. Zbl0721.11023MR1074487
  3. [HB] D.R. Heath-Brown, A mean value estimate for real character sum, Acta Arith.72 (1995), 235-275. Zbl0828.11040MR1347489
  4. [Iw] H. Iwaniec, On the order of vanishing of modular L-functions at the critical point, Séminaire de Théorie des Nombres de Bordeaux2 (1990), 365-376. Zbl0719.11029MR1081731
  5. [M-M] M.R. Murty and V.K. Murty, Mean values of derivatives of modular L-series, Ann. of Math.133 (1991), 447-475. Zbl0745.11032MR1109350
  6. [Mo] H.L. Montgomery, Topics in Multiplicative Number Theory, Lecture notes in Mathematics, Springer-Verlag, vol. 227, 1971. Zbl0216.03501MR337847
  7. [Ko] V.A. Kolyvagin, Finiteness of E(Q) and III(E(Q)) for a subclass of Weil curves, Math. USSR Izvest.32 (1989), 523-542. Zbl0662.14017MR954295
  8. [P-P] A. Perelli and J. Pomykala, Averages over twisted elliptic L-functions, Acta Arith.80 (1997), 149-163. Zbl0878.11022MR1450922
  9. [P-S] J. Pomykala and J. Szmidt, On the order of vanishing of n-th derivatives of L-functions of elliptic curves, Biuletyn Wojskowej Akademii Technicznej1242/496 (1993). 
  10. [Wa] J.-L. Waldspurger, Sur les coefficients de Fourier des formes modulaires de poids demi-entier, J. Math. Pures Appl.60 (1981), 375-484. Zbl0431.10015MR646366

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.