On the order of vanishing of modular L -functions at the critical point

Henryk Iwaniec

Journal de théorie des nombres de Bordeaux (1990)

  • Volume: 2, Issue: 2, page 365-376
  • ISSN: 1246-7405

How to cite

top

Iwaniec, Henryk. "On the order of vanishing of modular $L$-functions at the critical point." Journal de théorie des nombres de Bordeaux 2.2 (1990): 365-376. <http://eudml.org/doc/93522>.

@article{Iwaniec1990,
author = {Iwaniec, Henryk},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {twisted L-function; vanishing theorem; cusp form; elliptic curve; integral representation for the L-series; symmetric square L-series; large sieve inequality},
language = {eng},
number = {2},
pages = {365-376},
publisher = {Université Bordeaux I},
title = {On the order of vanishing of modular $L$-functions at the critical point},
url = {http://eudml.org/doc/93522},
volume = {2},
year = {1990},
}

TY - JOUR
AU - Iwaniec, Henryk
TI - On the order of vanishing of modular $L$-functions at the critical point
JO - Journal de théorie des nombres de Bordeaux
PY - 1990
PB - Université Bordeaux I
VL - 2
IS - 2
SP - 365
EP - 376
LA - eng
KW - twisted L-function; vanishing theorem; cusp form; elliptic curve; integral representation for the L-series; symmetric square L-series; large sieve inequality
UR - http://eudml.org/doc/93522
ER -

References

top
  1. [1] E. Bombieri, Le grand Crible dans la Théorie Analytique des Nombres, Astérique18 (1973). Zbl0292.10035MR371840
  2. [2] D. Bump, S. Friedberg and J. Hoffstein, Eisenstein series on the metaplectic group and non-vanishing theorems for automorphic L-functions and their derivatives. Ann. Math.131 (1990), 53-127. Zbl0699.10039MR1038358
  3. [3] J.-M. Deshouillers and H. Iwaniec, The non-vanishing of Rankin-Selberg zeta-functions at special points, AMS Contemporary Mathematics Vol.53 (1986), 51-95. Zbl0595.10025MR853553
  4. [4] V.A. Kolyvagin, Finateness of E(Q) and III(E, Q) for a subclass of Weil curves. Math. USSR Izv. Zbl0662.14017
  5. [5] K. Murty and R. Murty, Mean values of derivatives of modular L-series. (to appear in Ann. Math.). (See also K. Murty, Non-vanishing of L-functions and their derivatives in Automorphic Forms and Analytic Number Theory, (edited by R. Murty), CRM Publications, Montreal1990, 89-113). Zbl0745.11033
  6. [6] R.S. Phillips and P. Sarnak, On cusp forms for co-finite subgroups of PSL(2, R). Invent. Math.80 (1985), 339-364. Zbl0558.10017MR788414
  7. [7] D. Rohrlich, On L-functions of elliptic curves and anticyclotomic towers. Invent. Math.75 (1984), 383-408. Zbl0565.14008MR735332
  8. [8] D. Rohrlich, On L-functions of elliptic curves and cyclotomic towers. Invent. Math.75 (1984), 409-423. Zbl0565.14006MR735333
  9. [9] D. Roiirlich, L-functions and division towers. Math. Ann.281(1988), 611-632. Zbl0656.14013MR958262
  10. [10] D. Rohrlich, Non-vanishing of L-functions for GL(2). Invent. Math.97 (1989), 381-403. Zbl0677.10020
  11. [11] D. Rohrlich, The vanishing of certain Rankin-Selberg convolutions, in Automorphic Forms and Analytic Number Theory. (edited by R. Murty) CRM Publications, Montreal1990, 123-133. Zbl0737.11014MR1111015
  12. [12] G. Shimura, On modular forms of half-integral weight. Ann. Math.97 (1973), 440-481. Zbl0266.10022MR332663

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.