Linear fractional transformations of continued fractions with bounded partial quotients

J. C. Lagarias; J. O. Shallit

Journal de théorie des nombres de Bordeaux (1997)

  • Volume: 9, Issue: 2, page 267-279
  • ISSN: 1246-7405

Abstract

top
Let θ be a real number with continued fraction expansion θ = a 0 , a 1 , a 2 , , and let M = a b c d be a matrix with integer entries and nonzero determinant. If θ has bounded partial quotients, then a θ + b c θ + d = a 0 * , a 1 * , a 2 * , also has bounded partial quotients. More precisely, if a j K for all sufficiently large j , then a j * | det ( M ) | ( K + 2 ) for all sufficiently large j . We also give a weaker bound valid for all a j * with j 1 . The proofs use the homogeneous Diophantine approximation constant L θ = lim sup q q q θ - 1 . We show that 1 det ( M ) L ( θ ) L a θ + b c θ + d det ( M ) L ( θ ) .

How to cite

top

Lagarias, J. C., and Shallit, J. O.. "Linear fractional transformations of continued fractions with bounded partial quotients." Journal de théorie des nombres de Bordeaux 9.2 (1997): 267-279. <http://eudml.org/doc/248009>.

@article{Lagarias1997,
abstract = {Let $\theta $ be a real number with continued fraction expansion\begin\{equation*\}\theta = \left[ a\_0, a\_1, a\_2, \dots \right],\end\{equation*\}and let\begin\{equation*\}M = \begin\{bmatrix\}a & b \\ c & d \end\{bmatrix\}\end\{equation*\}be a matrix with integer entries and nonzero determinant. If $\theta $ has bounded partial quotients, then $\frac\{a \theta + b\}\{c \theta + d\} = \left[ a^\ast _0, a^\ast _1, a^\ast _2, \dots \right]$ also has bounded partial quotients. More precisely, if $a_j \le K$ for all sufficiently large $j$, then $a^\ast _j \le | \det (M)|(K + 2)$ for all sufficiently large $j$. We also give a weaker bound valid for all $a^\ast _j$ with $j \ge 1$. The proofs use the homogeneous Diophantine approximation constant $L_\infty \left( \theta \right) = \limsup _\{q \rightarrow \infty \} \left(q \left\Vert q^\theta \right\Vert \right)^\{-1\}$. We show that\begin\{equation*\} \frac\{1\}\{\left| \det (M) \right|\} L\_\infty ( \theta ) \le L\_\infty \left( \frac\{a \theta + b\}\{c \theta + d\} \right) \le \left| \det (M) \right| L\_\infty ( \theta ). \end\{equation*\}},
author = {Lagarias, J. C., Shallit, J. O.},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {Lagrange spectrum; diophantine approximation; linear fractional transformation; continued fractions; bounded partial quotients},
language = {eng},
number = {2},
pages = {267-279},
publisher = {Université Bordeaux I},
title = {Linear fractional transformations of continued fractions with bounded partial quotients},
url = {http://eudml.org/doc/248009},
volume = {9},
year = {1997},
}

TY - JOUR
AU - Lagarias, J. C.
AU - Shallit, J. O.
TI - Linear fractional transformations of continued fractions with bounded partial quotients
JO - Journal de théorie des nombres de Bordeaux
PY - 1997
PB - Université Bordeaux I
VL - 9
IS - 2
SP - 267
EP - 279
AB - Let $\theta $ be a real number with continued fraction expansion\begin{equation*}\theta = \left[ a_0, a_1, a_2, \dots \right],\end{equation*}and let\begin{equation*}M = \begin{bmatrix}a & b \\ c & d \end{bmatrix}\end{equation*}be a matrix with integer entries and nonzero determinant. If $\theta $ has bounded partial quotients, then $\frac{a \theta + b}{c \theta + d} = \left[ a^\ast _0, a^\ast _1, a^\ast _2, \dots \right]$ also has bounded partial quotients. More precisely, if $a_j \le K$ for all sufficiently large $j$, then $a^\ast _j \le | \det (M)|(K + 2)$ for all sufficiently large $j$. We also give a weaker bound valid for all $a^\ast _j$ with $j \ge 1$. The proofs use the homogeneous Diophantine approximation constant $L_\infty \left( \theta \right) = \limsup _{q \rightarrow \infty } \left(q \left\Vert q^\theta \right\Vert \right)^{-1}$. We show that\begin{equation*} \frac{1}{\left| \det (M) \right|} L_\infty ( \theta ) \le L_\infty \left( \frac{a \theta + b}{c \theta + d} \right) \le \left| \det (M) \right| L_\infty ( \theta ). \end{equation*}
LA - eng
KW - Lagrange spectrum; diophantine approximation; linear fractional transformation; continued fractions; bounded partial quotients
UR - http://eudml.org/doc/248009
ER -

References

top
  1. 1 A. Baker, A Concise Introduction to the Theory of Numbers, Cambridge University Press, 1984. Zbl0554.10001MR781734
  2. 2 A. Chitelet, Contribution à la théorie des fractions continues arithmétiques, Bull. Soc. Math. France40 (1912), 1-25. MR1504676JFM43.0285.02
  3. 3 S.D. Chowla, Some problems of diophantine approximation (I), Math. Zeitschrift33 (1931), 544-563. Zbl0001.32501MR1545227JFM57.0237.01
  4. 4 T.W. Cusick and M. Flahive, The Markoff and Lagrange Spectra, American Mathematical Society, Providence, RI, 1989. Zbl0685.10023MR1010419
  5. 5 T.W. Cusick and M. Mendès France, The Lagrange spectrum of a set, Acta Arith.34 (1979), 287-293. Zbl0409.10020MR543202
  6. 6 H. Davenport, A remark on continued fractions, Michigan Math. J.11 (1964), 343-344. Zbl0125.02802MR168526
  7. 7 M. Hall, On the sum and product of continued fractions, Annals of Math.48 (1947), 966-993. Zbl0030.02201MR22568
  8. 8 G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, Fifth Edition, Oxford University Press. Zbl0020.29201MR568909
  9. 9 A. Hurwitz, Über die angenäherte Darstellungen der Zahler durch rationale Brüche, Math. Ann.44 (1894), 417-436. MR1510845JFM25.0322.04
  10. 10 D.E. Knuth, The Art of Computer Programming, Vol. II: Seminumerical Algorithms, Addison-Wesley, 1981. Zbl0477.65002MR633878
  11. 11 M. Mendès France, Sur les fractions continues limitées, Acta Arith.23 (1973), 207-215. Zbl0228.10007MR323727
  12. 12 M. Mendès France, The depth of a rational number, Topics in Number Theory (Proc. Colloq. Debrecen, 1974)Colloq. Soc. Janos Bolyai, vol. 13, North-Holland, Amsterdam, 1976, pp. 183-194. Zbl0333.10003MR439739
  13. 13 M. Mendès France, On a theorem of Davenport concerning continued fractions, Mathematika23 (1976), 136-141. Zbl0359.10005MR429772
  14. 14 O. Perron, Über die Approximation irrationaler Zahlen durch rationale" Sitz. Heidelberg. Akad. Wiss.XIIA (4. Abhandlung) (1921), 3-17. Zbl48.0193.01JFM48.0193.01
  15. 15 G.N. Raney, On continued fractions and finite automata, Math. Annalen206 (1973), 265-283. Zbl0251.10024MR340166
  16. 16 W. Schmidt, Diophantine Approximation, Lecture Notes in Mathematics, vol. 785, Springer-Verlag, 1980. Zbl0421.10019MR568710
  17. 17 J.O. Shallit, Continued fractions with bounded partial quotients: a survey, Enseign. Math.38 (1992), 151-187. Zbl0753.11006
  18. 18 H.M. Stark, Introduction to Number Theory, Markham, 1970. Zbl0198.06401MR253973

NotesEmbed ?

top

You must be logged in to post comments.