Linear fractional transformations of continued fractions with bounded partial quotients

J. C. Lagarias; J. O. Shallit

Journal de théorie des nombres de Bordeaux (1997)

  • Volume: 9, Issue: 2, page 267-279
  • ISSN: 1246-7405

Abstract

top
Let θ be a real number with continued fraction expansion θ = a 0 , a 1 , a 2 , , and let M = a b c d be a matrix with integer entries and nonzero determinant. If θ has bounded partial quotients, then a θ + b c θ + d = a 0 * , a 1 * , a 2 * , also has bounded partial quotients. More precisely, if a j K for all sufficiently large j , then a j * | det ( M ) | ( K + 2 ) for all sufficiently large j . We also give a weaker bound valid for all a j * with j 1 . The proofs use the homogeneous Diophantine approximation constant L θ = lim sup q q q θ - 1 . We show that 1 det ( M ) L ( θ ) L a θ + b c θ + d det ( M ) L ( θ ) .

How to cite

top

Lagarias, J. C., and Shallit, J. O.. "Linear fractional transformations of continued fractions with bounded partial quotients." Journal de théorie des nombres de Bordeaux 9.2 (1997): 267-279. <http://eudml.org/doc/248009>.

@article{Lagarias1997,
abstract = {Let $\theta $ be a real number with continued fraction expansion\begin\{equation*\}\theta = \left[ a\_0, a\_1, a\_2, \dots \right],\end\{equation*\}and let\begin\{equation*\}M = \begin\{bmatrix\}a & b \\ c & d \end\{bmatrix\}\end\{equation*\}be a matrix with integer entries and nonzero determinant. If $\theta $ has bounded partial quotients, then $\frac\{a \theta + b\}\{c \theta + d\} = \left[ a^\ast _0, a^\ast _1, a^\ast _2, \dots \right]$ also has bounded partial quotients. More precisely, if $a_j \le K$ for all sufficiently large $j$, then $a^\ast _j \le | \det (M)|(K + 2)$ for all sufficiently large $j$. We also give a weaker bound valid for all $a^\ast _j$ with $j \ge 1$. The proofs use the homogeneous Diophantine approximation constant $L_\infty \left( \theta \right) = \limsup _\{q \rightarrow \infty \} \left(q \left\Vert q^\theta \right\Vert \right)^\{-1\}$. We show that\begin\{equation*\} \frac\{1\}\{\left| \det (M) \right|\} L\_\infty ( \theta ) \le L\_\infty \left( \frac\{a \theta + b\}\{c \theta + d\} \right) \le \left| \det (M) \right| L\_\infty ( \theta ). \end\{equation*\}},
author = {Lagarias, J. C., Shallit, J. O.},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {Lagrange spectrum; diophantine approximation; linear fractional transformation; continued fractions; bounded partial quotients},
language = {eng},
number = {2},
pages = {267-279},
publisher = {Université Bordeaux I},
title = {Linear fractional transformations of continued fractions with bounded partial quotients},
url = {http://eudml.org/doc/248009},
volume = {9},
year = {1997},
}

TY - JOUR
AU - Lagarias, J. C.
AU - Shallit, J. O.
TI - Linear fractional transformations of continued fractions with bounded partial quotients
JO - Journal de théorie des nombres de Bordeaux
PY - 1997
PB - Université Bordeaux I
VL - 9
IS - 2
SP - 267
EP - 279
AB - Let $\theta $ be a real number with continued fraction expansion\begin{equation*}\theta = \left[ a_0, a_1, a_2, \dots \right],\end{equation*}and let\begin{equation*}M = \begin{bmatrix}a & b \\ c & d \end{bmatrix}\end{equation*}be a matrix with integer entries and nonzero determinant. If $\theta $ has bounded partial quotients, then $\frac{a \theta + b}{c \theta + d} = \left[ a^\ast _0, a^\ast _1, a^\ast _2, \dots \right]$ also has bounded partial quotients. More precisely, if $a_j \le K$ for all sufficiently large $j$, then $a^\ast _j \le | \det (M)|(K + 2)$ for all sufficiently large $j$. We also give a weaker bound valid for all $a^\ast _j$ with $j \ge 1$. The proofs use the homogeneous Diophantine approximation constant $L_\infty \left( \theta \right) = \limsup _{q \rightarrow \infty } \left(q \left\Vert q^\theta \right\Vert \right)^{-1}$. We show that\begin{equation*} \frac{1}{\left| \det (M) \right|} L_\infty ( \theta ) \le L_\infty \left( \frac{a \theta + b}{c \theta + d} \right) \le \left| \det (M) \right| L_\infty ( \theta ). \end{equation*}
LA - eng
KW - Lagrange spectrum; diophantine approximation; linear fractional transformation; continued fractions; bounded partial quotients
UR - http://eudml.org/doc/248009
ER -

References

top
  1. 1 A. Baker, A Concise Introduction to the Theory of Numbers, Cambridge University Press, 1984. Zbl0554.10001MR781734
  2. 2 A. Chitelet, Contribution à la théorie des fractions continues arithmétiques, Bull. Soc. Math. France40 (1912), 1-25. MR1504676JFM43.0285.02
  3. 3 S.D. Chowla, Some problems of diophantine approximation (I), Math. Zeitschrift33 (1931), 544-563. Zbl0001.32501MR1545227JFM57.0237.01
  4. 4 T.W. Cusick and M. Flahive, The Markoff and Lagrange Spectra, American Mathematical Society, Providence, RI, 1989. Zbl0685.10023MR1010419
  5. 5 T.W. Cusick and M. Mendès France, The Lagrange spectrum of a set, Acta Arith.34 (1979), 287-293. Zbl0409.10020MR543202
  6. 6 H. Davenport, A remark on continued fractions, Michigan Math. J.11 (1964), 343-344. Zbl0125.02802MR168526
  7. 7 M. Hall, On the sum and product of continued fractions, Annals of Math.48 (1947), 966-993. Zbl0030.02201MR22568
  8. 8 G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, Fifth Edition, Oxford University Press. Zbl0020.29201MR568909
  9. 9 A. Hurwitz, Über die angenäherte Darstellungen der Zahler durch rationale Brüche, Math. Ann.44 (1894), 417-436. MR1510845JFM25.0322.04
  10. 10 D.E. Knuth, The Art of Computer Programming, Vol. II: Seminumerical Algorithms, Addison-Wesley, 1981. Zbl0477.65002MR633878
  11. 11 M. Mendès France, Sur les fractions continues limitées, Acta Arith.23 (1973), 207-215. Zbl0228.10007MR323727
  12. 12 M. Mendès France, The depth of a rational number, Topics in Number Theory (Proc. Colloq. Debrecen, 1974)Colloq. Soc. Janos Bolyai, vol. 13, North-Holland, Amsterdam, 1976, pp. 183-194. Zbl0333.10003MR439739
  13. 13 M. Mendès France, On a theorem of Davenport concerning continued fractions, Mathematika23 (1976), 136-141. Zbl0359.10005MR429772
  14. 14 O. Perron, Über die Approximation irrationaler Zahlen durch rationale" Sitz. Heidelberg. Akad. Wiss.XIIA (4. Abhandlung) (1921), 3-17. Zbl48.0193.01JFM48.0193.01
  15. 15 G.N. Raney, On continued fractions and finite automata, Math. Annalen206 (1973), 265-283. Zbl0251.10024MR340166
  16. 16 W. Schmidt, Diophantine Approximation, Lecture Notes in Mathematics, vol. 785, Springer-Verlag, 1980. Zbl0421.10019MR568710
  17. 17 J.O. Shallit, Continued fractions with bounded partial quotients: a survey, Enseign. Math.38 (1992), 151-187. Zbl0753.11006
  18. 18 H.M. Stark, Introduction to Number Theory, Markham, 1970. Zbl0198.06401MR253973

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.