Linear fractional transformations of continued fractions with bounded partial quotients
Journal de théorie des nombres de Bordeaux (1997)
- Volume: 9, Issue: 2, page 267-279
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topLagarias, J. C., and Shallit, J. O.. "Linear fractional transformations of continued fractions with bounded partial quotients." Journal de théorie des nombres de Bordeaux 9.2 (1997): 267-279. <http://eudml.org/doc/248009>.
@article{Lagarias1997,
abstract = {Let $\theta $ be a real number with continued fraction expansion\begin\{equation*\}\theta = \left[ a\_0, a\_1, a\_2, \dots \right],\end\{equation*\}and let\begin\{equation*\}M = \begin\{bmatrix\}a & b \\
c & d \end\{bmatrix\}\end\{equation*\}be a matrix with integer entries and nonzero determinant. If $\theta $ has bounded partial quotients, then $\frac\{a \theta + b\}\{c \theta + d\} = \left[ a^\ast _0, a^\ast _1, a^\ast _2, \dots \right]$ also has bounded partial quotients. More precisely, if $a_j \le K$ for all sufficiently large $j$, then $a^\ast _j \le | \det (M)|(K + 2)$ for all sufficiently large $j$. We also give a weaker bound valid for all $a^\ast _j$ with $j \ge 1$. The proofs use the homogeneous Diophantine approximation constant $L_\infty \left( \theta \right) = \limsup _\{q \rightarrow \infty \} \left(q \left\Vert q^\theta \right\Vert \right)^\{-1\}$. We show that\begin\{equation*\} \frac\{1\}\{\left| \det (M) \right|\} L\_\infty ( \theta ) \le L\_\infty \left( \frac\{a \theta + b\}\{c \theta + d\} \right) \le \left| \det (M) \right| L\_\infty ( \theta ). \end\{equation*\}},
author = {Lagarias, J. C., Shallit, J. O.},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {Lagrange spectrum; diophantine approximation; linear fractional transformation; continued fractions; bounded partial quotients},
language = {eng},
number = {2},
pages = {267-279},
publisher = {Université Bordeaux I},
title = {Linear fractional transformations of continued fractions with bounded partial quotients},
url = {http://eudml.org/doc/248009},
volume = {9},
year = {1997},
}
TY - JOUR
AU - Lagarias, J. C.
AU - Shallit, J. O.
TI - Linear fractional transformations of continued fractions with bounded partial quotients
JO - Journal de théorie des nombres de Bordeaux
PY - 1997
PB - Université Bordeaux I
VL - 9
IS - 2
SP - 267
EP - 279
AB - Let $\theta $ be a real number with continued fraction expansion\begin{equation*}\theta = \left[ a_0, a_1, a_2, \dots \right],\end{equation*}and let\begin{equation*}M = \begin{bmatrix}a & b \\
c & d \end{bmatrix}\end{equation*}be a matrix with integer entries and nonzero determinant. If $\theta $ has bounded partial quotients, then $\frac{a \theta + b}{c \theta + d} = \left[ a^\ast _0, a^\ast _1, a^\ast _2, \dots \right]$ also has bounded partial quotients. More precisely, if $a_j \le K$ for all sufficiently large $j$, then $a^\ast _j \le | \det (M)|(K + 2)$ for all sufficiently large $j$. We also give a weaker bound valid for all $a^\ast _j$ with $j \ge 1$. The proofs use the homogeneous Diophantine approximation constant $L_\infty \left( \theta \right) = \limsup _{q \rightarrow \infty } \left(q \left\Vert q^\theta \right\Vert \right)^{-1}$. We show that\begin{equation*} \frac{1}{\left| \det (M) \right|} L_\infty ( \theta ) \le L_\infty \left( \frac{a \theta + b}{c \theta + d} \right) \le \left| \det (M) \right| L_\infty ( \theta ). \end{equation*}
LA - eng
KW - Lagrange spectrum; diophantine approximation; linear fractional transformation; continued fractions; bounded partial quotients
UR - http://eudml.org/doc/248009
ER -
References
top- 1 A. Baker, A Concise Introduction to the Theory of Numbers, Cambridge University Press, 1984. Zbl0554.10001MR781734
- 2 A. Chitelet, Contribution à la théorie des fractions continues arithmétiques, Bull. Soc. Math. France40 (1912), 1-25. MR1504676JFM43.0285.02
- 3 S.D. Chowla, Some problems of diophantine approximation (I), Math. Zeitschrift33 (1931), 544-563. Zbl0001.32501MR1545227JFM57.0237.01
- 4 T.W. Cusick and M. Flahive, The Markoff and Lagrange Spectra, American Mathematical Society, Providence, RI, 1989. Zbl0685.10023MR1010419
- 5 T.W. Cusick and M. Mendès France, The Lagrange spectrum of a set, Acta Arith.34 (1979), 287-293. Zbl0409.10020MR543202
- 6 H. Davenport, A remark on continued fractions, Michigan Math. J.11 (1964), 343-344. Zbl0125.02802MR168526
- 7 M. Hall, On the sum and product of continued fractions, Annals of Math.48 (1947), 966-993. Zbl0030.02201MR22568
- 8 G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, Fifth Edition, Oxford University Press. Zbl0020.29201MR568909
- 9 A. Hurwitz, Über die angenäherte Darstellungen der Zahler durch rationale Brüche, Math. Ann.44 (1894), 417-436. MR1510845JFM25.0322.04
- 10 D.E. Knuth, The Art of Computer Programming, Vol. II: Seminumerical Algorithms, Addison-Wesley, 1981. Zbl0477.65002MR633878
- 11 M. Mendès France, Sur les fractions continues limitées, Acta Arith.23 (1973), 207-215. Zbl0228.10007MR323727
- 12 M. Mendès France, The depth of a rational number, Topics in Number Theory (Proc. Colloq. Debrecen, 1974)Colloq. Soc. Janos Bolyai, vol. 13, North-Holland, Amsterdam, 1976, pp. 183-194. Zbl0333.10003MR439739
- 13 M. Mendès France, On a theorem of Davenport concerning continued fractions, Mathematika23 (1976), 136-141. Zbl0359.10005MR429772
- 14 O. Perron, Über die Approximation irrationaler Zahlen durch rationale" Sitz. Heidelberg. Akad. Wiss.XIIA (4. Abhandlung) (1921), 3-17. Zbl48.0193.01JFM48.0193.01
- 15 G.N. Raney, On continued fractions and finite automata, Math. Annalen206 (1973), 265-283. Zbl0251.10024MR340166
- 16 W. Schmidt, Diophantine Approximation, Lecture Notes in Mathematics, vol. 785, Springer-Verlag, 1980. Zbl0421.10019MR568710
- 17 J.O. Shallit, Continued fractions with bounded partial quotients: a survey, Enseign. Math.38 (1992), 151-187. Zbl0753.11006
- 18 H.M. Stark, Introduction to Number Theory, Markham, 1970. Zbl0198.06401MR253973
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.