Localic Katětov-Tong insertion theorem and localic Tietze extension theorem
Commentationes Mathematicae Universitatis Carolinae (1997)
- Volume: 38, Issue: 4, page 801-814
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topLi, Yong Min, and Guo-jun, Wang. "Localic Katětov-Tong insertion theorem and localic Tietze extension theorem." Commentationes Mathematicae Universitatis Carolinae 38.4 (1997): 801-814. <http://eudml.org/doc/248051>.
@article{Li1997,
abstract = {In this paper, localic upper, respectively lower continuous chains over a locale are defined. A localic Katětov-Tong insertion theorem is given and proved in terms of a localic upper and lower continuous chain. Finally, the localic Urysohn lemma and the localic Tietze extension theorem are shown as applications of the localic insertion theorem.},
author = {Li, Yong Min, Guo-jun, Wang},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {frame; locale; lower (upper) continuous chain; normal locale; frame; normal frame; real valued continuous function; locales; localic Urysohn lemma},
language = {eng},
number = {4},
pages = {801-814},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Localic Katětov-Tong insertion theorem and localic Tietze extension theorem},
url = {http://eudml.org/doc/248051},
volume = {38},
year = {1997},
}
TY - JOUR
AU - Li, Yong Min
AU - Guo-jun, Wang
TI - Localic Katětov-Tong insertion theorem and localic Tietze extension theorem
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1997
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 38
IS - 4
SP - 801
EP - 814
AB - In this paper, localic upper, respectively lower continuous chains over a locale are defined. A localic Katětov-Tong insertion theorem is given and proved in terms of a localic upper and lower continuous chain. Finally, the localic Urysohn lemma and the localic Tietze extension theorem are shown as applications of the localic insertion theorem.
LA - eng
KW - frame; locale; lower (upper) continuous chain; normal locale; frame; normal frame; real valued continuous function; locales; localic Urysohn lemma
UR - http://eudml.org/doc/248051
ER -
References
top- Engelking R., General Topology, Warszawa, 1975. Zbl0684.54001MR0500779
- Fourman M.P., Hyland J.M.E., Sheaf models for analysis, Applications of sheaves, Lecture Notes in Math., vol. 753, Springer-Verlag, 1979, pp.280-301. Zbl0427.03028MR0555550
- Johnstone P.T., Stone Spaces, Cambridge Press, Cambridge, 1982. Zbl0586.54001MR0698074
- Johnstone P.T., The point of pointless topology, Bull. Amer. Math. Soc. 8 (1983), 41-53. (1983) Zbl0499.54002MR0682820
- Katětov M., On real-valued functions in topological spaces, Fund. Math. 38 (1951), 85-91; correction 40 (1953), 203-205. (1951) MR0050264
- Kubiak T., A strengthening of the Katětov-Tong insertion theorem, Comment. Math. Univ. Carolinae 34 (1993), 357-362. (1993) Zbl0807.54023MR1241744
- Li Yong-ming, Weak locale quotient morphisms and locally connected frames, J. Pure Appl. Alg. 110 (1996), 101-107. (1996) MR1390674
- Liu Yingming, Luo Maokang, Lattice-valued Hahn-Dieudonné-Tong insertion theorem and stratification structure, Top. Appl. 45 (1992), 173-178. (1992) Zbl0767.54016MR1180808
- Madden J.J., Frames associated with an abelian -group, Trans. Amer. Math. Soc. 331 (1992), 265-279. (1992) Zbl0765.54029MR1042288
- Pultr A., Tozzi A., Equationally closed subframes and representation of quotient spaces, Cahiers Top. Geom. Diff. Cat. 33 (1993), 167-183. (1993) Zbl0789.54008MR1239466
- Tong H., Some characterization of normal and perfectly normal spaces, Bull. Amer. Math. Soc. 54 (1948), 65; see also Duke Math. Soc. 19 (1952), 248-292. (1948) MR0050265
- Vickers S., Topology Via Logic, Cambridge Press, Cambridge, 1989. Zbl0922.54002MR1002193
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.