Equationally close subframes and representation of quotient spaces

Aleš Pultr; Anna Tozzi

Cahiers de Topologie et Géométrie Différentielle Catégoriques (1993)

  • Volume: 34, Issue: 3, page 167-183
  • ISSN: 1245-530X

How to cite

top

Pultr, Aleš, and Tozzi, Anna. "Equationally close subframes and representation of quotient spaces." Cahiers de Topologie et Géométrie Différentielle Catégoriques 34.3 (1993): 167-183. <http://eudml.org/doc/91522>.

@article{Pultr1993,
author = {Pultr, Aleš, Tozzi, Anna},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
keywords = {Frechet spaces; metrizable spaces; separation axiom ; equationally closed subframes of a frame; quotient spaces in the category of topological spaces; frame homomorphism; approximation by closed sets; quotient mappings},
language = {eng},
number = {3},
pages = {167-183},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Equationally close subframes and representation of quotient spaces},
url = {http://eudml.org/doc/91522},
volume = {34},
year = {1993},
}

TY - JOUR
AU - Pultr, Aleš
AU - Tozzi, Anna
TI - Equationally close subframes and representation of quotient spaces
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 1993
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 34
IS - 3
SP - 167
EP - 183
LA - eng
KW - Frechet spaces; metrizable spaces; separation axiom ; equationally closed subframes of a frame; quotient spaces in the category of topological spaces; frame homomorphism; approximation by closed sets; quotient mappings
UR - http://eudml.org/doc/91522
ER -

References

top
  1. [1] C.E. Aull and W.J. Thron: Separation axioms between T0 and T1, Indag.Math.24(1962), 26-37 Zbl0108.35402MR138082
  2. [2] B. Banaschewski and A. Pultr: Variants of openness, Seminarberichte aus dem Fachbereich Mathematik, FernUniversität Hagen, Nr.44 -1992, Teil1, 39-54 MR1300720
  3. [3] E. Čech:Topological Spaces, Publishing House of the CzechoslovakAcademy of Sciences, Prague, 1965 Zbl0141.39401MR211373
  4. [4] D. Dikranjan and E. Giuli: Closure operators induced by topological epireflections, Coll.Math.Soc.János Bolyai41 (1983), 235-24 Zbl0601.54016MR863906
  5. [5] D. Dikranjan, E. Giuli and W. Tholen: Closure Operators II, Categorical Topology (Proceedings of the Conference, Prague1988), World Scientific Publ . Co.1989, 297-335 MR1047909
  6. [6] H. Herrlich and G.E. Strecker: Category Theory, Allyn and Bacon, 1973 Zbl0265.18001MR349791
  7. [7] P.T. Johnstonc: "Stone Spaces", Cambridge University Press, Cambridge, 1982 Zbl0499.54001MR698074
  8. [8] A. Joyal and M. Tierney: An extension of the Galois theory of Grothendieck, Memoirs of the AMS, Volume 51, Number 309 (September 1984) Zbl0541.18002MR756176
  9. [9] S. MacLane: Categories for the Working Mathematician, Springer-Verlag, New York (1970) Zbl0705.18001MR1712872
  10. [10] A. Pultr and A. Tozzi: Notes on Kuratowski-Mrówka theorems in point-free context, Cahiers de Top.et Géom.Diff.Cat.XXXIII-1(1992),3-14 Zbl0772.54016MR1163423
  11. [11] A. Pultr and A. Tozzi: The role of separation axioms in algebraic representation of some topological facts, Seminarberichte aus dem Fachbereich Mathematik, FernUniversität Hagen, Nr. 44 -1992, Teil 2, 322-332 Zbl0797.54029
  12. [12] W J.Thron: Lattice-equivalence of topological spaces, Duke Math.J.29(1962), 671-679 Zbl0109.15203MR146787

Citations in EuDML Documents

top
  1. Petr Simon, On accumulation points
  2. Yong Min Li, Wang Guo-jun, Localic Katětov-Tong insertion theorem and localic Tietze extension theorem
  3. Franco Obersnel, Open maps do not preserve Whyburn property
  4. Angelo Bella, Ivan V. Yashchenko, On AP and WAP spaces
  5. Mi Ae Moon, Myung Hyun Cho, Junhui Kim, On AP spaces in concern with compact-like sets and submaximality
  6. Vladimir Vladimirovich Tkachuk, Ivan V. Yashchenko, Almost closed sets and topologies they determine
  7. Masami Sakai, Notes on strongly Whyburn spaces

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.