Full regularity of weak solutions to a class of nonlinear fluids in two dimensions -- stationary, periodic problem

Petr Kaplický; Josef Málek; Jana Stará

Commentationes Mathematicae Universitatis Carolinae (1997)

  • Volume: 38, Issue: 4, page 681-695
  • ISSN: 0010-2628

Abstract

top
We prove the existence of regular solution to a system of nonlinear equations describing the steady motions of a certain class of non-Newtonian fluids in two dimensions. The equations are completed by requirement that all functions are periodic.

How to cite

top

Kaplický, Petr, Málek, Josef, and Stará, Jana. "Full regularity of weak solutions to a class of nonlinear fluids in two dimensions -- stationary, periodic problem." Commentationes Mathematicae Universitatis Carolinae 38.4 (1997): 681-695. <http://eudml.org/doc/248066>.

@article{Kaplický1997,
abstract = {We prove the existence of regular solution to a system of nonlinear equations describing the steady motions of a certain class of non-Newtonian fluids in two dimensions. The equations are completed by requirement that all functions are periodic.},
author = {Kaplický, Petr, Málek, Josef, Stará, Jana},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {non-Newtonian fluids; shear dependent viscosity; regularity; Hölder continuity of gradients; shear-dependent viscosity; regularity; Hölder continuous gradient; existence; incompressible non-Newtonian fluids; weak solution},
language = {eng},
number = {4},
pages = {681-695},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Full regularity of weak solutions to a class of nonlinear fluids in two dimensions -- stationary, periodic problem},
url = {http://eudml.org/doc/248066},
volume = {38},
year = {1997},
}

TY - JOUR
AU - Kaplický, Petr
AU - Málek, Josef
AU - Stará, Jana
TI - Full regularity of weak solutions to a class of nonlinear fluids in two dimensions -- stationary, periodic problem
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1997
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 38
IS - 4
SP - 681
EP - 695
AB - We prove the existence of regular solution to a system of nonlinear equations describing the steady motions of a certain class of non-Newtonian fluids in two dimensions. The equations are completed by requirement that all functions are periodic.
LA - eng
KW - non-Newtonian fluids; shear dependent viscosity; regularity; Hölder continuity of gradients; shear-dependent viscosity; regularity; Hölder continuous gradient; existence; incompressible non-Newtonian fluids; weak solution
UR - http://eudml.org/doc/248066
ER -

References

top
  1. Amrouche Ch., Girault V., Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension, Czechoslovak Math. J. 44 (1994), 109-141. (1994) Zbl0823.35140MR1257940
  2. Bojarski B.V., Generalized solutions to first order systems of elliptic type with discontinuous coefficients (in Russian), Mat. Sbornik 43 (1957), 451-503. (1957) MR0106324
  3. Frehse J., Málek J., Steinhauer M., An Existence Result for Fluids with Shear Dependent Viscosity-Steady Flows, accepted to the Proceedings of the Second World Congress of Nonlinear Analysts. 
  4. Lions J.L., Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod Paris (1969). (1969) Zbl0189.40603MR0259693
  5. Málek J., Nečas J., Růžička M., On weak solutions to a class of non-Newtonian Incompressible fluids in bounded three-dimensional domains. The case p 2 , submitted to {Advances in Differential Equations}, Preprint SFB 256, No. 481 (1996). (1996) MR1389407
  6. Málek J., Rajagopal K.R., Růžička M., Existence and regularity of solutions and stability of the rest state for fluids with shear dependent viscosity, Mathematical Models and Methods in Applied Sciences 6 (1995), 789-812. (1995) MR1348587
  7. Meyers N.G., On L p estimates for the gradient of solutions of second order elliptic divergence equations, Annali della Scuola Normale Superiore di Pisa 17 (1963), 189-206. (1963) MR0159110
  8. Nečas J., Sur les normes équivalentes dans W k , p ( Ø m e g a ) et sur la coercivité des formes formellement positives, Les Presses de l'Université de Montréal, Montréal, 1996, pp. 102-128. 
  9. Nečas J., Sur la régularité des solutions faibles des équations elliptiques non linéaires, Comment. Math. Univ. Carolinae 9.3 (1968), 365-413. (1968) MR0241804
  10. Nečas J., Sur la régularité des solutions variationnelles des équations elliptiques nonlinéaires d’ordre 2 k en deux dimensions, Annali della Scuola Normale Superiore di Pisa XXI Fasc. III (1967), 427-457. (1967) MR0226467
  11. Stará J., Regularity results for non-linear elliptic systems in two dimensions, Annali della Scuola Normale Superiore di Pisa XXV Fasc. I (1971), 163-190. (1971) MR0299935
  12. Temam R., Navier-Stokes Equations and Nonlinear Functional Analysis, Society for Industrial and Applied Mathematics Philadelphia, Pennsylvania (1995), second edition. (1995) Zbl0833.35110
  13. Ziemer W.P., Weakly Differentiable Functions, Springer-Verlag New York Inc. (1989). (1989) Zbl0692.46022MR1014685

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.