On CCC boolean algebras and partial orders

András Hajnal; István Juhász; Zoltán Szentmiklóssy

Commentationes Mathematicae Universitatis Carolinae (1997)

  • Volume: 38, Issue: 3, page 537-544
  • ISSN: 0010-2628

Abstract

top
We partially strengthen a result of Shelah from [Sh] by proving that if and is a CCC partial order with e.g. (the successor of ) and then is -linked.

How to cite

top

Hajnal, András, Juhász, István, and Szentmiklóssy, Zoltán. "On CCC boolean algebras and partial orders." Commentationes Mathematicae Universitatis Carolinae 38.3 (1997): 537-544. <http://eudml.org/doc/248076>.

@article{Hajnal1997,
abstract = {We partially strengthen a result of Shelah from [Sh] by proving that if $\kappa =\kappa ^\{\omega \}$ and $P$ is a CCC partial order with e.g. $|P|\le \kappa ^\{+\omega \}$ (the $\omega ^\{\text\{th\}\}$ successor of $\kappa $) and $|P|\le 2^\{\kappa \}$ then $P$ is $\kappa $-linked.},
author = {Hajnal, András, Juhász, István, Szentmiklóssy, Zoltán},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {boolean algebra; partial order; CCC; CCC Boolean algebra; CCC poset; indepedent set of a graph},
language = {eng},
number = {3},
pages = {537-544},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On CCC boolean algebras and partial orders},
url = {http://eudml.org/doc/248076},
volume = {38},
year = {1997},
}

TY - JOUR
AU - Hajnal, András
AU - Juhász, István
AU - Szentmiklóssy, Zoltán
TI - On CCC boolean algebras and partial orders
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1997
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 38
IS - 3
SP - 537
EP - 544
AB - We partially strengthen a result of Shelah from [Sh] by proving that if $\kappa =\kappa ^{\omega }$ and $P$ is a CCC partial order with e.g. $|P|\le \kappa ^{+\omega }$ (the $\omega ^{\text{th}}$ successor of $\kappa $) and $|P|\le 2^{\kappa }$ then $P$ is $\kappa $-linked.
LA - eng
KW - boolean algebra; partial order; CCC; CCC Boolean algebra; CCC poset; indepedent set of a graph
UR - http://eudml.org/doc/248076
ER -

References

top
  1. Engelking R., Karlowicz M., Some theorems of set-theory and their topological consequences, Fund. Math. 57 (1965), 275-286. (1965) Zbl0137.41904MR0196693
  2. Hajnal A., Juhász I., Shelah S., Splitting strongly almost disjoint families, Transactions of the AMS 295 (1986), 369-387. (1986) MR0831204
  3. Hajnal A., Juhász I., Szentmiklóssy Z., Compact CCC spaces of prescribed density, in: Combinatorics, P. Erdös is 80, Bolyai Soc. Math. Studies, Keszthely, 1993, pp.239-252. MR1249715
  4. Kunen K., Set Theory, North Holland, Amsterdam, 1979. Zbl0960.03033MR0756630
  5. Shelah S., Remarks on Boolean algebras, Algebra Universalis 11 (1980), 77-89. (1980) Zbl0451.06015MR0593014

NotesEmbed ?

top

You must be logged in to post comments.