The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On CCC boolean algebras and partial orders”

Some non-multiplicative properties are l -invariant

Vladimir Vladimirovich Tkachuk (1997)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A cardinal function ϕ (or a property 𝒫 ) is called l -invariant if for any Tychonoff spaces X and Y with C p ( X ) and C p ( Y ) linearly homeomorphic we have ϕ ( X ) = ϕ ( Y ) (or the space X has 𝒫 ( X 𝒫 ) iff Y 𝒫 ). We prove that the hereditary Lindelöf number is l -invariant as well as that there are models of Z F C in which hereditary separability is l -invariant.

Sharp estimates for bubbling solutions of a fourth order mean field equation

Chang-Shou Lin, Juncheng Wei (2007)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

We consider a sequence of multi-bubble solutions u k of the following fourth order equation Δ 2 u k = ρ k h ( x ) e u k Ω h e u k in Ω , u k = Δ u k = 0 on Ω , ( * ) where h is a C 2 , β positive function, Ω is a bounded and smooth domain in 4 , and ρ k is a constant such that ρ k C . We show that (after extracting a subsequence), lim k + ρ k = 32 σ 3 m for some positive integer m 1 , where σ 3 is the area of the unit sphere in 4 . Furthermore, we obtain the following sharp estimates for  ρ k : ρ k - 32 σ 3 m = c 0 j = 1 m ϵ k , j 2 l j Δ G 4 ( p j , p l ) + Δ R 4 ( p j , p j ) + 1 32 σ 3 Δ log h ( p j ) + o j = 1 m ϵ k , j 2 where c 0 > 0 , log 64 ϵ k , j 4 = max x B δ ( p j ) u k ( x ) - log ( Ω h e u k ) and u k 32 σ 3 j = 1 m G 4 ( · , p j ) in C loc 4 ( Ω { p 1 , ... , p m } ) . This yields a bound of solutions as...

F σ -absorbing sequences in hyperspaces of subcontinua

Helma Gladdines (1993)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let 𝒟 denote a true dimension function, i.e., a dimension function such that 𝒟 ( n ) = n for all n . For a space X , we denote the hyperspace consisting of all compact connected, non-empty subsets by C ( X ) . If X is a countable infinite product of non-degenerate Peano continua, then the sequence ( 𝒟 n ( C ( X ) ) ) n = 2 is F σ -absorbing in C ( X ) . As a consequence, there is a homeomorphism h : C ( X ) Q such that for all n , h [ { A C ( X ) : 𝒟 ( A ) n + 1 } ] = B n × Q × Q × , where B denotes the pseudo boundary of the Hilbert cube Q . It follows that if X is a countable infinite product of non-degenerate...