Choice principles in elementary topology and analysis
Commentationes Mathematicae Universitatis Carolinae (1997)
- Volume: 38, Issue: 3, page 545-552
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topHerrlich, Horst. "Choice principles in elementary topology and analysis." Commentationes Mathematicae Universitatis Carolinae 38.3 (1997): 545-552. <http://eudml.org/doc/248085>.
@article{Herrlich1997,
abstract = {Many fundamental mathematical results fail in ZF, i.e., in Zermelo-Fraenkel set theory without the Axiom of Choice. This article surveys results — old and new — that specify how much “choice” is needed precisely to validate each of certain basic analytical and topological results.},
author = {Herrlich, Horst},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Axiom of (Countable) Choice; Boolean Prime Ideal Theorem; Theorems of Ascoli; Baire; Čech-Stone and Tychonoff; compact; Lindelöf and orderable spaces; axiom of choice; Zermelo-Fraenkel set theory; compact space; Lindelöf space; orderable space},
language = {eng},
number = {3},
pages = {545-552},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Choice principles in elementary topology and analysis},
url = {http://eudml.org/doc/248085},
volume = {38},
year = {1997},
}
TY - JOUR
AU - Herrlich, Horst
TI - Choice principles in elementary topology and analysis
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1997
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 38
IS - 3
SP - 545
EP - 552
AB - Many fundamental mathematical results fail in ZF, i.e., in Zermelo-Fraenkel set theory without the Axiom of Choice. This article surveys results — old and new — that specify how much “choice” is needed precisely to validate each of certain basic analytical and topological results.
LA - eng
KW - Axiom of (Countable) Choice; Boolean Prime Ideal Theorem; Theorems of Ascoli; Baire; Čech-Stone and Tychonoff; compact; Lindelöf and orderable spaces; axiom of choice; Zermelo-Fraenkel set theory; compact space; Lindelöf space; orderable space
UR - http://eudml.org/doc/248085
ER -
References
top- Alas O.T., The Axiom of choice and two particular forms of Tychonoff theorem, Portugal. Math. 28 (1968), 75-76. (1968) MR0281600
- Banaschewski B., Compactification and the axiom of choice, unpublished manuscript, 1979.
- Bentley H.L., Herrlich H., Compactness and rings of continuous functions - without the axiom of choice, to appear. Zbl0986.54029MR1722566
- Bentley H.L., Herrlich H., Countable choice and pseudometric spaces, to appear. Zbl0922.03068MR1617460
- Blass A., A model without ultrafilters, Bull. Acad. Sci. Polon., Sér. Sci. Math. Astr. Phys. 25 (1977), 329-331. (1977) Zbl0365.02054MR0476510
- Comfort W.W., A theorem of Stone-Čech type, and a theorem of Tychonoff type, without the axiom of choice; and their realcompact analogues, Fund. Math. 63 (1988), 97-110. (1988) MR0236880
- Good C., Tree I.J., Continuing horrors of topology without choice, Topol. Appl. 63 (1995), 79-90. (1995) Zbl0822.54001MR1328621
- Goodstein R.L., Existence in Mathematics, in: Logic and Foundations of Mathematics (eds. D. van Dalen et al.), Wolters-Noordhoff Publ. Co., 1968, pp.70-82. Zbl0162.30901MR0247998
- Halpern J.D., Lévy A., The Boolean prime ideal theorem does not imply the axiom of choice, Proc. of Symposium Pure Math. of the AMS 13 (1971), Part I, 83-134. (1971) MR0284328
- Herrlich H., Compactness and the Axiom of Choice, Appl. Categ. Structures 4 (1996), 1-14. (1996) Zbl0881.54027MR1393958
- Herrlich H., An effective construction of a free ultrafilter, Papers on Gen. Topol. Appl. (eds. S. Andima et al.), Annals New York Acad Sci. 806 (1996), 201-206. (1996) MR1429654
- Herrlich H., The Ascoli Theorem is equivalent to the Boolean Prime Ideal Theorem, to appear. Zbl0880.54005MR1602169
- Herrlich H., The Ascoli Theorem is equivalent to the Axiom of Choice, to appear.
- Herrlich H., Steprāns J., Maximal filters, continuity and choice principles, to appear in Quaestiones Math. 20 (1997). MR1625478
- Herrlich H., Strecker G.E., When in Lindelöf?, to appear in Comment. Math. Univ. Carolinae 38 (1997). MR1485075
- Hilbert D., Über das Unendliche, Mathem. Annalen 95 (1926), 161-190. (1926) MR1512272
- Jaegermann M., The Axiom of Choice and two definitions of continuity, Bull. Acad. Polon. Sci, Sér. Sci, Math., Astr. et Phys. 13 (1965), 699-704. (1965) Zbl0252.02059MR0195711
- Jech T., Eine Bemerkung zum Auswahlaxiom, Časopis Pěst. Mat. 93 (1968), 30-31. (1968) Zbl0167.27402MR0233706
- Jech T.J., The Axiom of Choice, North Holland, Amsterdam, 1973. Zbl0259.02052MR0396271
- Jensen R.B., Independence of the Axiom of Dependent Choices from the Countable Axiom of Choice, J. Symb. Logic 31 (1966), 294. (1966)
- Kelley J.L., The Tychonoff product theorem implies the axiom of choice, Fund. Math. 37 (1950), 75-76. (1950) Zbl0039.28202MR0039982
- Loś J., Ryll-Nardzewski C., Effectiveness of the representation theory for Boolean algebras, Fund. Math. 41 (1955), 49-56. (1955) MR0065527
- Maddy P., Believing the axioms I., J. Symb. Logic 53 (1988), 481-511. (1988) Zbl0652.03033MR0947855
- Moore G.H., Zermelo's Axiom of Choice. Its Origins, Developments and Influence, Springer, New York, 1982. MR0679315
- Mycielski J., Two remarks on Tychonoff's product theorem, Bull. Acad. Polon. Sci. Sér. Sci. Math., Astr. Phys. 12 (1964), 439-441. (1964) Zbl0138.17703MR0215731
- Pincus D., Adding Dependent Choice to the Boolean Prime Ideal Theorem, Logic Colloq. 76 (1977), 547-565. (1977) MR0480027
- Rubin H., Rubin J.E., Equivalents of the Axiom of Choice II., North Holland, Amsterdam, 1985. MR0798475
- Rubin H., Scott D., Some topological theorems equivalent to the Boolean prime ideal theorem, Bull. Amer. Math. Soc. 60 (1954), 389. (1954)
- Sierpiñski W., Sur le rôle de l'axiome de M. Zermelo dans l'Analyse moderne, Compt. Rendus Hebdomadaires des Sēances de l'Academie des Sciences, Paris 193 (1916), 688-691. (1916)
- Sierpiñski W., L'axiome de M. Zermelo et son rôle dans la théorie des ensembles et l'analyse, Bull. Acad. Sci. Cracovie, Cl. Sci. Math., Sér. A (1918), 97-152. (1918)
- Douwen E.K., Horrors of topology without AC: a nonnormal orderable space, Proc. Amer. Math. Soc. 95 (1985), 101-105. (1985) Zbl0574.03039MR0796455
- Ward L.E., A weak Tychonoff theorem and the axiom of choice, Proc. Amer. Math. Soc. 13 (1962), 757-758. (1962) Zbl0112.14301MR0186537
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.