When is 𝐍 Lindelöf?

Horst Herrlich; George E. Strecker

Commentationes Mathematicae Universitatis Carolinae (1997)

  • Volume: 38, Issue: 3, page 553-556
  • ISSN: 0010-2628

Abstract

top
Theorem. In ZF (i.e., Zermelo-Fraenkel set theory without the axiom of choice) the following conditions are equivalent: (1) is a Lindelöf space, (2) is a Lindelöf space, (3) is a Lindelöf space, (4) every topological space with a countable base is a Lindelöf space, (5) every subspace of is separable, (6) in , a point x is in the closure of a set A iff there exists a sequence in A that converges to x , (7) a function f : is continuous at a point x iff f is sequentially continuous at x , (8) in , every unbounded set contains a countable, unbounded set, (9) the axiom of countable choice holds for subsets of .

How to cite

top

Herrlich, Horst, and Strecker, George E.. "When is $\mathbf {N}$ Lindelöf?." Commentationes Mathematicae Universitatis Carolinae 38.3 (1997): 553-556. <http://eudml.org/doc/248055>.

@article{Herrlich1997,
abstract = {Theorem. In ZF (i.e., Zermelo-Fraenkel set theory without the axiom of choice) the following conditions are equivalent: (1) $\mathbb \{N\}$ is a Lindelöf space, (2) $\mathbb \{Q\}$ is a Lindelöf space, (3) $\mathbb \{R\}$ is a Lindelöf space, (4) every topological space with a countable base is a Lindelöf space, (5) every subspace of $\mathbb \{R\}$ is separable, (6) in $\mathbb \{R\}$, a point $x$ is in the closure of a set $A$ iff there exists a sequence in $A$ that converges to $x$, (7) a function $f:\mathbb \{R\}\rightarrow \mathbb \{R\}$ is continuous at a point $x$ iff $f$ is sequentially continuous at $x$, (8) in $\mathbb \{R\}$, every unbounded set contains a countable, unbounded set, (9) the axiom of countable choice holds for subsets of $\mathbb \{R\}$.},
author = {Herrlich, Horst, Strecker, George E.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {axiom of choice; axiom of countable choice; Lindelöf space; separable space; (sequential) continuity; (Dedekind-) finiteness; axiom of choice; axiom of countable choice; Lindelöf space; sequential continuity},
language = {eng},
number = {3},
pages = {553-556},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {When is $\mathbf \{N\}$ Lindelöf?},
url = {http://eudml.org/doc/248055},
volume = {38},
year = {1997},
}

TY - JOUR
AU - Herrlich, Horst
AU - Strecker, George E.
TI - When is $\mathbf {N}$ Lindelöf?
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1997
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 38
IS - 3
SP - 553
EP - 556
AB - Theorem. In ZF (i.e., Zermelo-Fraenkel set theory without the axiom of choice) the following conditions are equivalent: (1) $\mathbb {N}$ is a Lindelöf space, (2) $\mathbb {Q}$ is a Lindelöf space, (3) $\mathbb {R}$ is a Lindelöf space, (4) every topological space with a countable base is a Lindelöf space, (5) every subspace of $\mathbb {R}$ is separable, (6) in $\mathbb {R}$, a point $x$ is in the closure of a set $A$ iff there exists a sequence in $A$ that converges to $x$, (7) a function $f:\mathbb {R}\rightarrow \mathbb {R}$ is continuous at a point $x$ iff $f$ is sequentially continuous at $x$, (8) in $\mathbb {R}$, every unbounded set contains a countable, unbounded set, (9) the axiom of countable choice holds for subsets of $\mathbb {R}$.
LA - eng
KW - axiom of choice; axiom of countable choice; Lindelöf space; separable space; (sequential) continuity; (Dedekind-) finiteness; axiom of choice; axiom of countable choice; Lindelöf space; sequential continuity
UR - http://eudml.org/doc/248055
ER -

References

top
  1. Bentley H.L., Herrlich H., Countable choice and pseudometric spaces, in preparation. Zbl0922.03068
  2. Herrlich H., Compactness and the Axiom of Choice, Appl. Categ. Struct. 4 (1996), 1-14. (1996) Zbl0881.54027MR1393958
  3. Herrlich H., Steprāns J., Maximal Filters, continuity, and choice principles, to appear in Quaestiones Math. MR1625478
  4. Jaegermann M., The axiom of choice and two definitions of continuity, Bulletin de l'Acad. Polonaise des Sciences, Ser. Math. 13 (1965), 699-704. (1965) Zbl0252.02059MR0195711
  5. Jech T., Eine Bemerkung zum Auswahlaxiom, Časopis pro pěstování matematiky 9 (1968), 30-31. (1968) Zbl0167.27402MR0233706
  6. Sierpiński W., Sur le rôle de l'axiome de M. Zermelo dans l'Analyse moderne, Compt. Rendus Hebdomadaires des Séances de l'Academie des Sciences, Paris 193 (1916), 688-691. (1916) 
  7. Sierpiński W., L'axiome de M. Zermelo et son rôle dans la théorie des ensembles et l'analyse, Bulletin de l'Académie des Sciences de Cracovie, Classe des Sciences Math., Sér. A (1918), 97-152. (1918) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.