A note on the structure of quadratic Julia sets
Commentationes Mathematicae Universitatis Carolinae (1997)
- Volume: 38, Issue: 2, page 395-406
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topKeller, Karsten. "A note on the structure of quadratic Julia sets." Commentationes Mathematicae Universitatis Carolinae 38.2 (1997): 395-406. <http://eudml.org/doc/248098>.
@article{Keller1997,
abstract = {In a series of papers, Bandt and the author have given a symbolic and topological description of locally connected quadratic Julia sets by use of special closed equivalence relations on the circle called Julia equivalences. These equivalence relations reflect the landing behaviour of external rays in the case of local connectivity, and do not apply completely if a Julia set is connected but fails to be locally connected. However, rational external rays land also in the general case. The present note shows that for a quadratic map which does not possess an irrational indifferent periodic orbit and has a connected Julia set the following holds: The equivalence relation induced by the landing behaviour of rational external rays forms the rational part of a Julia equivalence.},
author = {Keller, Karsten},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {quadratic Julia set; Julia equivalence; external ray; quadratic Julia set; Julia equivalence; external ray},
language = {eng},
number = {2},
pages = {395-406},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {A note on the structure of quadratic Julia sets},
url = {http://eudml.org/doc/248098},
volume = {38},
year = {1997},
}
TY - JOUR
AU - Keller, Karsten
TI - A note on the structure of quadratic Julia sets
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1997
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 38
IS - 2
SP - 395
EP - 406
AB - In a series of papers, Bandt and the author have given a symbolic and topological description of locally connected quadratic Julia sets by use of special closed equivalence relations on the circle called Julia equivalences. These equivalence relations reflect the landing behaviour of external rays in the case of local connectivity, and do not apply completely if a Julia set is connected but fails to be locally connected. However, rational external rays land also in the general case. The present note shows that for a quadratic map which does not possess an irrational indifferent periodic orbit and has a connected Julia set the following holds: The equivalence relation induced by the landing behaviour of rational external rays forms the rational part of a Julia equivalence.
LA - eng
KW - quadratic Julia set; Julia equivalence; external ray; quadratic Julia set; Julia equivalence; external ray
UR - http://eudml.org/doc/248098
ER -
References
top- Bandt C., Keller K., Self-similar sets 2. A simple approach to the topological structure of fractals, Math. Nachr. 145 (1991), 27-39. (1991) Zbl0824.28007MR1138368
- Bandt C., Keller K., Symbolic dynamics for angle-doubling on the circle, I. The topology of locally connected Julia sets, in: Ergodic Theory and Related Topics (U. Krengel, K. Richter, V. Warstat, eds.), Lecture Notes in Math. 1514, Springer, 1992, pp.1-23. Zbl0768.58013MR1179168
- Bandt C., Keller K., Symbolic dynamics for angle-doubling on the circle, II. Symbolic description of the abstract Mandelbrot set, Nonlinearity 6 (1993), 377-392. (1993) Zbl0785.58021MR1223739
- Beardon A., Iteration of Rational Functions, Springer, 1992. Zbl1120.30300MR1128089
- Branner B., The Mandelbrot set, Proc. Symp. Appl. Math. 39 (1989), 75-105. (1989) MR1010237
- Carleson L., Gamelin T., Complex Dynamics, Springer-Verlag, 1993. Zbl0782.30022MR1230383
- Douady A., Descriptions of compact sets in , in: Topological Methods in Modern Mathematics, Publish or Perish 1993, pp.429-465. MR1215973
- Douady A., Hubbard J., Étude dynamique des polynômes complexes, Publications Mathématiques d'Orsay 84-02 (1984) (première partie) and 85-02 (1985) (deuxième partie). Zbl0571.30026
- Douady A., Hubbard J., On the dynamics of polynomial-like mappings, Ann. Sci. Ecole Norm. Sup. (4) 18 (1985), 287-343. (1985) Zbl0587.30028MR0816367
- Goldberg L., Milnor J., Fixed points of polynomial maps I/II, Ann. Scient. Ec. Norm. Sup., série, t.25/26 (1992/1993). MR1209913
- Hubbard J.H., Local connectivity of Julia sets and bifurcation loci: Three Theorems of J.-C. Yoccoz, in: Topological Methods in Modern Mathematics, Publish or Perish 1993, pp.467-511. Zbl0797.58049MR1215974
- Keller K., The abstract Mandelbrot set - an atlas of abstract Julia sets, in: Topology, Measures, and Fractals (C. Bandt, J. Flachsmeyer, H. Haase, eds.), Akademie Verlag, Berlin, 1992, pp.76-81. Zbl0795.58032MR1226281
- Keller K., Symbolic dynamics for angle-doubling on the circle, III. Sturmian sequences and the quadratic map, Ergod. Th. and Dynam. Sys. 14 (1994), 787-805. (1994) Zbl0830.58011MR1304142
- Keller K., Symbolic dynamics for angle-doubling on the circle, IV. Equivalence of abstract Julia sets, Atti del Seminario dell'Universita de Modenà XLII (1994), 301-321. (1994) Zbl0830.58012MR1310452
- Keller K., Invarante Faktoren, Juliaäquivalenzen und die abstrakte Mandelbrotmenge, Habilitationsschrift, Universität Greifswald, 1996.
- Keller K., Julia equivalences and abstract Siegel disks, submitted. Zbl0945.30024
- Lau E., Schleicher D., Internal addresses in the Mandelbrot set and irreducibility of polynomials, Stony Brook IMS preprint, 1994/19.
- Lavaurs P., Une déscription combinatoire de l'involution définie par M sur les rationnels à dénominateur impair, C.R. Acad. Sc. Paris Série I, t.303 (1986), 143-146. Zbl0663.58018MR0853606
- Lyubich M.Yu., Geometry of quadratic polynomials: Moduli, rigidity, and local connectivity, Stony Brook IMS preprint 1993/9.
- Milnor J., Dynamics on one complex variable: Introductory Lectures, preprint, Stony Brook, 1990. MR1721240
- Milnor J., Local Connectivity of Julia sets: Expository Lectures, preprint, Stony Brook, 1992. Zbl1107.37305MR1765085
- Milnor J., Errata for `Local Connectivity of Julia sets: Expository Lectures', preprint, Stony Brook, 1992. MR1765085
- Milnor J., Periodic orbits, external rays and the Mandelbrot set; An expository account, preprint 1995, Lecture Notes in Mathematics 1342 (1988), 465-563. MR1755445
- McMullen C., Complex Dynamics and Renormalization, Annals of Mathematics Studies, Princeton University Press, Princeton, 1994. Zbl0822.30002MR1312365
- McMullen C., Frontiers in complex dynamics, Bull. Amer. Math. Soc. (N.S.) 31 (1994), 155-172. (1994) Zbl0807.30013MR1260523
- Penrose C.S., On quotients of the shift associated with dendrite Julia sets of quadratic polynomials, PhD thesis, University of Warwick, 1990.
- Penrose C.S., Quotients of the shift associated with dendrite Julia sets, preprint, London, 1994.
- Schleicher D., Internal Addresses in the Mandelbrot set and irreducibility of polynomials, PhD thesis, Cornell University, 1994.
- Schleicher D., The structure of the Mandelbrot set, preprint, München, 1995.
- Schleicher D., The dynamics of iterated polynomials, in preparation.
- Steinmetz N., Rational iteration, De Gruyter Studies in Mathematics 16 (1993). (1993) Zbl0773.58010MR1224235
- Thurston W.P., On the combinatorics and dynamics of iterated rational maps, preprint, Princeton, 1985.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.