Prime Ideal Theorems and systems of finite character
Commentationes Mathematicae Universitatis Carolinae (1997)
- Volume: 38, Issue: 3, page 513-536
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topErné, Marcel. "Prime Ideal Theorems and systems of finite character." Commentationes Mathematicae Universitatis Carolinae 38.3 (1997): 513-536. <http://eudml.org/doc/248104>.
@article{Erné1997,
abstract = {We study several choice principles for systems of finite character and prove their equivalence to the Prime Ideal Theorem in ZF set theory without Axiom of Choice, among them the Intersection Lemma (stating that if $\text\{S\}$ is a system of finite character then so is the system of all collections of finite subsets of $\bigcup \text\{S\}$ meeting a common member of $\text\{S\}$), the Finite Cutset Lemma (a finitary version of the Teichm“uller-Tukey Lemma), and various compactness theorems. Several implications between these statements remain valid in ZF even if the underlying set is fixed. Some fundamental algebraic and order-theoretical facts like the Artin-Schreier Theorem on the orderability of real fields, the Erdös-De Bruijn Theorem on the colorability of infinite graphs, and Dilworth’s Theorem on chain-decompositions for posets of finite width, are easy consequences of the Intersection Lemma or of the Finite Cutset Lemma.},
author = {Erné, Marcel},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {axiom of choice; compact; consistent; prime ideal; system of finite character; subbase; axiom of choice; compactness; consistency; prime ideal; system of finite character; subbase},
language = {eng},
number = {3},
pages = {513-536},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Prime Ideal Theorems and systems of finite character},
url = {http://eudml.org/doc/248104},
volume = {38},
year = {1997},
}
TY - JOUR
AU - Erné, Marcel
TI - Prime Ideal Theorems and systems of finite character
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1997
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 38
IS - 3
SP - 513
EP - 536
AB - We study several choice principles for systems of finite character and prove their equivalence to the Prime Ideal Theorem in ZF set theory without Axiom of Choice, among them the Intersection Lemma (stating that if $\text{S}$ is a system of finite character then so is the system of all collections of finite subsets of $\bigcup \text{S}$ meeting a common member of $\text{S}$), the Finite Cutset Lemma (a finitary version of the Teichm“uller-Tukey Lemma), and various compactness theorems. Several implications between these statements remain valid in ZF even if the underlying set is fixed. Some fundamental algebraic and order-theoretical facts like the Artin-Schreier Theorem on the orderability of real fields, the Erdös-De Bruijn Theorem on the colorability of infinite graphs, and Dilworth’s Theorem on chain-decompositions for posets of finite width, are easy consequences of the Intersection Lemma or of the Finite Cutset Lemma.
LA - eng
KW - axiom of choice; compact; consistent; prime ideal; system of finite character; subbase; axiom of choice; compactness; consistency; prime ideal; system of finite character; subbase
UR - http://eudml.org/doc/248104
ER -
References
top- Artin E., Schreier O., Algebraische Konstruktion reeller Körper, Abh. Math. Sem. Hamb. Univ. 5 (1926), 85-99. (1926)
- Aubert K.E., Theory of -ideals, Acta Math. 107 (1962), 1-52. (1962) Zbl0108.26002MR0148773
- Banaschewski B., The power of the ultrafilter theorem, J. London Math. Soc. (2) 27 (1983), 193-202. (1983) Zbl0523.03037MR0692524
- Banaschewski B., Prime elements from prime ideals, Order 2 (1985), 211-213. (1985) Zbl0576.06010MR0815866
- Banaschewski B., A new proof that ``Krull implies Zorn'', Mathematical Logic Quarterly 40 (1994), 478-480. (1994) Zbl0813.03032MR1301940
- Banaschewski B., Erné M., On Krull's separation lemma, Order 10 (1993), 253-260. (1993) Zbl0795.06005MR1267191
- Crawley P., Dilworth R.P., Algebraic Theory of Lattices, Prentice-Hall, N.J., 1973. Zbl0494.06001
- Davey B.A., Priestley H.A., Introduction to Lattices and Order, Cambridge University Press, 1990. Zbl1002.06001MR1058437
- de Bruijn N.G., Erdös P., A colour problem for infinite graphs and a problem in the theory of relations, Indag. Math. 13 (1951), 371-373. (1951) MR0046630
- Ebbinghaus H.-D., Flum J., Thomas W., Mathematical Logic, Springer-Verlag, New York, 1991. Zbl1139.03001MR1278260
- Engeler E., Eine Konstruktion von Modellerweiterungen, Z. Math. Logik Grundlagen Math. 5 (1959), 126-131. (1959) Zbl0087.00904MR0109124
- Erné M., Semidistributivity, prime ideals and the subbase lemma, Rend. Circ. Math. Palermo II -XLI (1992), 241-250. (1992) MR1196618
- Erné M., A primrose path from Krull to Zorn, Comment. Math. Univ. Carolinae 36 (1995), 123-126. (1995) MR1334420
- Erné M., Prime ideal theorems for universal algebras, Preprint Univ. Hannover, 1995.
- Erné M., Gatzke H., Convergence and continuity in partially ordered sets and semilattices, in: R.-E. Hoffmann and K.H. Hofmann (eds.), Continuous lattices and their applications, Lecture Notes in Pure and Appl. Math. 101, Marcel Dekker Inc., New York-Basel, 1985, pp.9-40. MR0825993
- Frink O., Topology in lattices, Trans. Amer. Math. Soc. 51 (1942), 569-583. (1942) Zbl0061.39305MR0006496
- Fuchs L., Partially Ordered Algebraic Systems, Pergamon Press, Oxford, 1963. Zbl0137.02001MR0171864
- Gähler W., Grundstrukturen der Analysis I, Akademie-Verlag and Birkhäuser Verlag, Berlin-Basel, 1977. MR0519344
- Gierz G., Hofmann K.H., Keimel K., Lawson J.D., Mislove M., Scott D.S., A Compendium of Continuous Lattices, Springer-Verlag, Berlin-Heidelberg-New York, 1980. Zbl0452.06001MR0614752
- Grätzer G., General Lattice Theory, Birkhäuser, Basel, 1978. MR0504338
- Halpern J., The independence of the axiom of choice from the Boolean prime ideal theorem, Fund. Math. 55 (1964), 57-66. (1964) Zbl0151.01002MR0164891
- Halpern J., Lévy A., The Boolean prime ideal theorem does not imply the axiom of choice, in: D. Scott (ed.), Axiomatic set theory, Proc. Symp. Pure Math., Univ. of California, Los Angeles 13 (1), (1967), 83-124. MR0284328
- Halpern D., Howard P.E., Cardinals such that , Bull. Amer. Math. Soc. 76 (1970), 487-490. (1970) Zbl0223.02055MR0268034
- Henkin L., The completeness of the first order functional calculus, J. Symbolic Logic 14 (1949), 159-166. (1949) Zbl0034.00602MR0033781
- Hodges W., Krull implies Zorn, J. London Math. Soc. 19 (1979), 285-287. (1979) Zbl0394.03045MR0533327
- Jech T., The Axiom of Choice, North-Holland, Amsterdam-New York, 1973. Zbl0259.02052MR0396271
- Johnstone P., Almost maximal ideals, Fund. Math. 123 (1984), 197-209. (1984) Zbl0552.06004MR0761975
- Kelley J.L., The Tychonoff product theorem implies the axiom of choice, Fund. Math. 37 (1950), 75-76. (1950) Zbl0039.28202MR0039982
- Klimovsky G., Zorn's theorem and the existence of maximal filters and ideals in distributive lattices, Rev. Un. Mat. Argentina 18 (1958), 160-164. (1958) MR0132707
- Läuchli H., Coloring infinite graphs and the Boolean prime ideal theorem, Israel J. Math. 9 (1971), 420-429. (1971) MR0288051
- Lévy A., Remarks on a paper by J. Mycielski, Acta Math. Acad. Sci. Hungar. 14 (1963), 125-130. (1963) MR0146088
- Los J., Ryll-Nardzewski C., 0n the application of Tychonoff's theorem in mathematical proofs, Fund. Math. 38 (1951), 233-237. (1951) MR0048795
- Los J., Ryll-Nardzewski C., Effectiveness of the representation theory for Boolean algebras, Fund Math. 41 (1954), 49-56. (1954) MR0065527
- Moore G.H., Zermelo's Axiom of Choice - its Origins, Development and Influence, Springer-Verlag, New York-Heidelberg-Berlin, 1982. Zbl0497.01005MR0679315
- Mycielski J., Some remarks and problems on the colouring of infinite graphs and the theorem of Kuratowski, Acta Math. Acad. Sci. Hung. 12 (1961), 125-129. (1961) MR0130686
- Parovičenko I.I., Topological equivalents of the Tihonov theorem, Dokl. Akad. Nauk SSSR 184 (1969), 38-39 Soviet Math. Dokl. 10 (1969), 33-34. (1969) MR0238266
- Rav Y., Variants of Rado's selection lemma and their applications, Math. Nachr. 79 (1977), 145-165. (1977) Zbl0359.02066MR0476530
- Rav Y., Semiprime ideals in general lattices, J. Pure and Appl. Algebra 56 (1989), 105-118. (1989) Zbl0665.06006MR0979666
- Rubin H., Rubin J.E., Equivalents of the Axiom of Choice, II, North-Holland, Amsterdam-New York-Oxford, 1985. MR0798475
- Rubin H., Scott D.S., Some topological theorems equivalent to the prime ideal theorem, Bull. Amer. Math. Soc. 60 (1954), 389 (Abstract). (1954)
- Sageev G., An independence result concerning the axiom of choice, Ann. Math. Logic 8 (1975), 1-184. (1975) Zbl0306.02060MR0366668
- Scott D.S., Prime ideals for rings, lattices and Boolean algebras, Bull. Amer. Math. Soc. 60 (1954), 390 (Abstract). (1954)
- Tarski A., Prime ideal theorems for Boolean algebras and the axiom of choice. Prime ideal theorems for set algebras and ordering principles. Prime ideal theorems for set algebras and the axiom of choice, Bull. Amer. Math. Soc. 60 (1954), 390-391 (Abstracts). (1954)
- Teichmüller O., Braucht der Algebraiker das Auswahlaxiom?, Deutsche Math. 4 (1939), 567-577. (1939) MR0000212
- Tukey J.W., Convergence and uniformity in topology, Annals of Math. Studies 2, Princeton, 1940. Zbl0025.09102MR0002515
- van Benthem J.F.A.K., A set-theoretical equivalent of the prime ideal theorem for Boolean algebras, Fund. Math. 89 (1975), 151-153. (1975) Zbl0363.04010MR0382003
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.