Prime and maximal ideals of partially ordered sets

Marcel Erné

Mathematica Slovaca (2006)

  • Volume: 56, Issue: 1, page 1-22
  • ISSN: 0139-9918

How to cite

top

Erné, Marcel. "Prime and maximal ideals of partially ordered sets." Mathematica Slovaca 56.1 (2006): 1-22. <http://eudml.org/doc/32126>.

@article{Erné2006,
author = {Erné, Marcel},
journal = {Mathematica Slovaca},
keywords = {Boolean algebra; down-set; prime ideal; maximal ideal; pseudocomplement; semidistributive},
language = {eng},
number = {1},
pages = {1-22},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Prime and maximal ideals of partially ordered sets},
url = {http://eudml.org/doc/32126},
volume = {56},
year = {2006},
}

TY - JOUR
AU - Erné, Marcel
TI - Prime and maximal ideals of partially ordered sets
JO - Mathematica Slovaca
PY - 2006
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 56
IS - 1
SP - 1
EP - 22
LA - eng
KW - Boolean algebra; down-set; prime ideal; maximal ideal; pseudocomplement; semidistributive
UR - http://eudml.org/doc/32126
ER -

References

top
  1. ALEXANDROFF P., Diskrete Räume, Mat. Sb. 2 (1937), 501-518. (1937) Zbl0018.09105MR0004764
  2. BANASCHEWSKI B.-ERNÉ M., On Krull's separation lemma, Order 10 (1993), 253-260. (1993) Zbl0795.06005MR1267191
  3. BIRKHOFF G., Lattice Theory, (3rd ed.). Amer. Math. Soc .Colloq. Publ. 25, Amer. Math. Soc., Providence, RI, 1979. (1979) Zbl0505.06001MR0598630
  4. DAVID E.-ERNÉ M., Ideal completion and Stone representation of ideal-distributive ordered sets, Topology Appl. 44 (1992), 95-113. (1992) Zbl0768.06003MR1173247
  5. DAVEY B. A.-PRIESTLEY H. A., Introduction to Lattices and Order, Cambridge University Press, Cambridge, 1990. (1990) Zbl0701.06001MR1058437
  6. ERNÉ M., Distributivgesetze und Dedekindsche Schnitte, Abh. Braunschw. Wiss. Ges. 33 (1982), 117-145. (1982) MR0693169
  7. ERNÉ M., Bigeneration in complete lattices and principal separation in partially ordered sets, Order 8 (1991), 197-221. (1991) MR1137911
  8. ERNÉ M., Semidistributivity, prime ideals, and the subbase lemma, Rend. Circ. Mat. Palermo (2) 41 (1992), 241-250. (1992) Zbl0779.06001MR1196618
  9. ERNÉ M., Distributive laws for concept lattices, Algebra Universalis 30 (1993), 538-580. (1993) Zbl0795.06006MR1240572
  10. ERNÉ M., Prime ideal theorems and systems of finite character, Comment. Math. Univ. Carolin. 38 (1997), 513-536. (1997) Zbl0938.03072MR1485072
  11. ERNÉ M., Prime ideal theory for general algebras, Appl. Categ. Structures 8 (2000), 115-144. Zbl0980.08001MR1785840
  12. ERNÉ M.-WILKE G., Standard completions for quasiordered sets, Semigroup Forum 27 (1983), 351-376. (1983) Zbl0517.06009MR0714681
  13. FRINK O., Ideals in partially ordered sets, Amer. Math. Monthly 61 (1954), 223-234. (1954) Zbl0055.25901MR0061575
  14. FRINK O., Pseudo-complements in semi-lattices, Duke Math. J. 29 (1962), 505-514. (1962) Zbl0114.01602MR0140449
  15. GANTER B.-WILLE R., Formal Concept Analysis - Mathematical Foundation, Springer-Verlag, Berlin-Heidelberg-New York, 1999. (1999) MR1707295
  16. GIERZ G.-HOFMANN K. H.-KEIMEL K.-LAWSON J. D.-MISLOVE M.-SCOTT D. S., Continuous Lattices and Domains, Encyclopedia Math. Appl. 93, Cambridge University Press, Cambridge, 2003. Zbl1088.06001MR1975381
  17. GORBUNOV A. V.-TUMANOV V. L., On the existence of prime ideals in semidistributive lattices, Algebra Universalis 16 (1983), 250-252. (1983) Zbl0516.06006MR0692266
  18. GRÄTZER G., General Lattice Theory, Birkhäuser, Basel, 1973. (1973) 
  19. HALPERN J.-LÉVY A., The Boolean prime ideal theorem does not imply the axiom of choice, In: Axiomatic Set Theory. Proc Symp. Pure Math. Amer. Math. Soc University of California, Los Angeles, July 10-August 5, 1967 (D. Scott, ed.), Proc Sympos. Pure Math. 13, Amer. Math. Soc, Providence, RI, 1971, pp. 83-134. (1967) MR0284328
  20. HERRLICH H., The axiom of choice holds if and only if maximal closed filters exist, MLQ Math. Log. Q. 49 (2003), 323-324. MR1979139
  21. HOWARD P.-RUBIN J. E., Consequences of the Axiom of Choice, Math. Surveys Monogr. 59, Amer. Math. Soc, Providence, RI, 1998. (1998) Zbl0947.03001MR1637107
  22. JOHNSTONE P. T., Almost maximal ideals, Fund. Math. 123 (1984), 201-206. (1984) Zbl0552.06004MR0761975
  23. KATRIŇÁK T., Pseudokomplementare Halbverbande, Mat. Casopis 18 (1968), 121-143. (1968) MR0262123
  24. KATRIŇÁK T., The structure of distributive p-algebras. Regularity and congruences, Algebra Universalis 3 (1973), 238-246. (1973) MR0332598
  25. KATRIŇÁK T., A new proof of the Glivenko-Frink Theorem, Bull. Soc Roy. Sci. Liege 50 (1981), 171. (1981) Zbl0482.06001MR0646688
  26. LARMEROVÁ J.-RACHŮNEK J., Translations of distributive and modular ordered sets, Acta Univ. Palack. Olomuc. Fac. Rerum. Natur. Math. 27 (1988), 13-23. (1988) Zbl0693.06003MR1039879
  27. NIEDERLE J., Boolean and distributive ordered sets: characterization and representation by sets, Order 12 (1995), 189-210. (1995) Zbl0838.06004MR1354802
  28. RHINEGHOST Y. T., The Boolean prime ideal theorem holds if and only if maximal open filters exist, Cah. Topol. Geom. Differ. Categ. 43 (2002), 313-315. MR1949661
  29. RUBIN H.-SCOTT D., Some topological theorems equivalent to the Boolean prime ideal theorem, Bull. Amer. Math. Soc. 60 (1954), 389. (1954) 
  30. SCOTT D., The theorem on maximal ideals in lattices and the axiom of choice, Bull. Amer. Math. Soc. 60 (1954), 83. (1954) 
  31. TARSKI A., Prime ideal theorems for Boolean algebras and the axiom of choice, Bull. Amer. Math. Soc. 60 (1954), 390-391 (Abstract). (1954) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.