Special almost P-spaces

Alessandro Fedeli

Commentationes Mathematicae Universitatis Carolinae (1997)

  • Volume: 38, Issue: 2, page 371-374
  • ISSN: 0010-2628

Abstract

top
Motivated by some examples, we introduce the concept of special almost P-space and show, using the reflection principle, that for every space X of this kind the inequality “ | X | ψ c ( X ) t ( X ) " holds.

How to cite

top

Fedeli, Alessandro. "Special almost P-spaces." Commentationes Mathematicae Universitatis Carolinae 38.2 (1997): 371-374. <http://eudml.org/doc/248112>.

@article{Fedeli1997,
abstract = {Motivated by some examples, we introduce the concept of special almost P-space and show, using the reflection principle, that for every space $X$ of this kind the inequality “$|X| \le \psi _\{c\}(X)^\{t(X)\}$" holds.},
author = {Fedeli, Alessandro},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {cardinal function; almost P-space; cardinal function; almost P-space},
language = {eng},
number = {2},
pages = {371-374},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Special almost P-spaces},
url = {http://eudml.org/doc/248112},
volume = {38},
year = {1997},
}

TY - JOUR
AU - Fedeli, Alessandro
TI - Special almost P-spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1997
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 38
IS - 2
SP - 371
EP - 374
AB - Motivated by some examples, we introduce the concept of special almost P-space and show, using the reflection principle, that for every space $X$ of this kind the inequality “$|X| \le \psi _{c}(X)^{t(X)}$" holds.
LA - eng
KW - cardinal function; almost P-space; cardinal function; almost P-space
UR - http://eudml.org/doc/248112
ER -

References

top
  1. Dow A., An introduction to applications of elementary submodels to topology, Topology Proc. 13 (1988), 17-72. (1988) Zbl0696.03024MR1031969
  2. Dow A., More set-theory for topologists, Topology Appl. 64 (1995), 243-300. (1995) Zbl0837.54001MR1342520
  3. Engelking R., General Topology, Heldermann Verlag, Berlin, 1989. Zbl0684.54001MR1039321
  4. Fedeli A., Watson S., Elementary submodels and cardinal functions, Topology Proc., to appear. Zbl0894.54008MR1429175
  5. Hodel R.E., Cardinal Functions I, in: Handbook of Set-theoretic Topology, (Kunen K. and Vaughan J.E., eds.), North Holland, 1984, pp.1-61. Zbl0559.54003MR0776620
  6. Juhàsz I., Cardinal Functions in Topology-ten years later, Mathematical Centre Tracts 123, Amsterdam, 1980. MR0576927
  7. Levy R., Almost P-spaces, Can. J. Math. 29 (1977), 284-288. (1977) Zbl0342.54032MR0464203
  8. van Mill J., An introduction to β ø m e g a , in: Handbook of Set-theoretic Topology, (Kunen K. and Vaughan J.E., eds.), North Holland, 1984, pp.503-567. MR0776630
  9. Watson S., The construction of topological spaces: Planks and Resolutions, in: Recent Progress in General Topology (Hušek M. and Van Mill J., eds.), North Holland, 1992, pp.675-757. Zbl0803.54001MR1229141
  10. Watson S., The Lindelöf number of a power; an introduction to the use of elementary submodels in general topology, Topology Appl. 58 (1994), 25-342. (1994) Zbl0836.54004MR1280708

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.