Loading [MathJax]/extensions/MathZoom.js
In this note, we show that if for any transitive neighborhood assignment for there is a point-countable refinement such that for any non-closed subset of there is some such that , then is transitively . As a corollary, if is a sequential space and has a point-countable -network then is transitively , and hence if is a Hausdorff -space and has a point-countable -network, then is transitively . We prove that if is a countably compact sequential space and has a point-countable...
A neighbourhood assignment in a space is a family of open subsets of such that for any . A set is a kernel of if . If every neighbourhood assignment in has a closed and discrete (respectively, discrete) kernel, then is said to be a -space (respectively a dually discrete space). In this paper we show among other things that every GO-space is dually discrete, every subparacompact scattered space and every continuous image of a Lindelöf -space is a -space and we prove an addition...
A DC-space (or space of dense constancies) is a Tychonoff space such that for each there is a family of open sets , the union of which is dense in , such that , restricted to each , is constant. A number of characterizations of DC-spaces are given, which lead to an algebraic generalization of the concept, which, in turn, permits analysis of DC-spaces in the language of archimedean -algebras. One is led naturally to the notion of an almost DC-space (in which the densely constant functions...
A compact metric space X̃ is said to be a continuous pseudo-hairy space over a compact space X ⊂ X̃ provided there exists an open, monotone retraction such that all fibers are pseudo-arcs and any continuum in X̃ joining two different fibers of r intersects X. A continuum is called a continuous pseudo-fan of a compactum X if there are a point and a family ℱ of pseudo-arcs such that , any subcontinuum of intersecting two different elements of ℱ contains c, and ℱ is homeomorphic to X (with...
We construct in ZFC an ultrafilter such that for every one-to-one function there exists with in the summable ideal, i.e. the sum of reciprocals of its elements converges. This strengthens Gryzlov’s result concerning the existence of -points.
In this note we show the following theorem: “Let be an almost -discrete space, where is a regular cardinal. Then is -Baire iff it is a -Baire space and every point- open cover of such that is locally- at a dense set of points.” For we obtain a well-known characterization of Baire spaces. The case is also discussed.
In this note, we introduce the concept of weakly monotonically monolithic spaces, and show that every weakly monotonically monolithic space is a -space. Thus most known conclusions on -spaces can be obtained by this conclusion. As a corollary, we have that if a regular space is sequential and has a point-countable -network then is a -space.
We prove that a continuous image of a Radon-Nikodým compact of weight less than b is Radon-Nikodým compact. As a Banach space counterpart, subspaces of Asplund generated Banach spaces of density character less than b are Asplund generated. In this case, in addition, there exists a subspace of an Asplund generated space which is not Asplund generated and which has density character exactly b.
Currently displaying 1 –
20 of
35