The distribution of the sum-of-digits function
Michael Drmota; Johannes Gajdosik
Journal de théorie des nombres de Bordeaux (1998)
- Volume: 10, Issue: 1, page 17-32
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topDrmota, Michael, and Gajdosik, Johannes. "The distribution of the sum-of-digits function." Journal de théorie des nombres de Bordeaux 10.1 (1998): 17-32. <http://eudml.org/doc/248163>.
@article{Drmota1998,
abstract = {By using a generating function approach it is shown that the sum-of-digits function (related to specific finite and infinite linear recurrences) satisfies a central limit theorem. Additionally a local limit theorem is derived.},
author = {Drmota, Michael, Gajdosik, Johannes},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {digital expansions; central limit theorem; sum-of-digits function; linear recurring base sequences; local limit law},
language = {eng},
number = {1},
pages = {17-32},
publisher = {Université Bordeaux I},
title = {The distribution of the sum-of-digits function},
url = {http://eudml.org/doc/248163},
volume = {10},
year = {1998},
}
TY - JOUR
AU - Drmota, Michael
AU - Gajdosik, Johannes
TI - The distribution of the sum-of-digits function
JO - Journal de théorie des nombres de Bordeaux
PY - 1998
PB - Université Bordeaux I
VL - 10
IS - 1
SP - 17
EP - 32
AB - By using a generating function approach it is shown that the sum-of-digits function (related to specific finite and infinite linear recurrences) satisfies a central limit theorem. Additionally a local limit theorem is derived.
LA - eng
KW - digital expansions; central limit theorem; sum-of-digits function; linear recurring base sequences; local limit law
UR - http://eudml.org/doc/248163
ER -
References
top- [1] N.L. Bassily and I. Kátai, Distribution of the values of q-additive functions on polynomial sequences, Acta Math. Hung.68 (1995), 353-361. Zbl0832.11035MR1333478
- [2] R. Bellman and H.N. Shapiro, On a problem in additive number theory, Ann. Math.49 (1948), 333-340. Zbl0031.25401MR23864
- [3] L.E. Bush, An asymptotic formula for the average sum of the digits of integers, Am. Math. Monthly47 (1940), 154-156. Zbl0025.10601MR1225JFM66.1212.01
- [4] J. Coquet, Power sums of digital sums, J. Number Th.22 (1986), 161-176. Zbl0578.10009MR826949
- [5] H. DelangeSur la fonction sommatoire de la fonction "Somme de Chiffres", L 'Enseignement math.21 (1975), 31-77. Zbl0306.10005MR379414
- [6] M. Drmota and M. Skalba, The parity of the Zeckendorf sum-of-digits-function, preprint. Zbl0958.11015MR1751039
- [7] J.M. Dumont and A. Thomas, Digital sum moments and substitutions, Acta Arith.64 (1993), 205-225. Zbl0774.11041MR1225425
- [8] J.M. Dumont and A. Thomas, Gaussian asymptotic properties of the sum-of-digits functions, J. Number Th.62 (1997), 19-38. Zbl0869.11009MR1430000
- [9] C.-G. Esseen, Fourier analysis of distribution functions. A mathematical study of the Laplace-Gaussian law, Acta Math.77 (1945), 1-125. Zbl0060.28705MR14626
- [10] J. Gajdosik, Kombinatorische Faktorisierungen und Ziffernentwicklungen, thesis, TU Wien, 1996.
- [11] P.J. Grabner, P. Kirschenhofer, H. Prodinger, and R.F. Tichy, On the moments of the sum-of-digits function, in: Applications of Fibonacci Numbers5 (1993), 263-271 Zbl0797.11012MR1271366
- [12] P.J. Grabner and R.F. Tichy, Contributions to digit expansions with respect to linear recurrences, J. Number Th.36 (1990), 160-169. Zbl0711.11004MR1072462
- [13] P. Grabner and R.F. Tichy, a-Expansions, linear recurrences, and the sum-of-digits function, manuscripta math.70 (1991), 311-324. Zbl0725.11005MR1089067
- [14] R.E. Kennedy and C.N. Cooper, An extension of a theorem by Cheo and Yien concerning digital sums, Fibonacci Q.29 (1991), 145-149. Zbl0728.11004MR1119401
- [15] P. Kirschenhofer, On the variance of the sum of digits function, Lecture Notes Math.1452 (1990), 112-116. Zbl0714.11005MR1084640
- [16] W. Parry, On the,β-expansion of real numbers, Acta Math. Acad. Sci. Hung., 12 (1961), 401-416. Zbl0099.28103
- [17] A. Pethö and R.F. Tichy, On digit expansions with respect to linear recurrences, J. Number Th.33 (1989), 243-256. Zbl0676.10010MR1034204
- [18] J. Schmid, The joint distribution of the binary digits of integer multiples, Acta Arith.43 (1984), 391-415. Zbl0489.10008MR756290
- [19] W.M. Schmidt, The joint distribution the digits of certain integer s-tuples, Studies in pure mathematics, Mem. of P. Turan (1983), 605-622. Zbl0523.10030MR820255
- [20] H. Trollope, An explicit expression for binary digital sums, Meth. Mag.41 (1968), 21-25. Zbl0162.06303MR233763
Citations in EuDML Documents
top- Guy Barat, Tomasz Downarowicz, Anzelm Iwanik, Pierre Liardet, Propriétés topologiques et combinatoires des échelles de numération
- Michael Drmota, Georg Gutenbrunner, The joint distribution of -additive functions on polynomials over finite fields
- Mario Lamberger, Jörg M. Thuswaldner, Distribution properties of digital expansions arising from linear recurrences
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.