The joint distribution of -additive functions on polynomials over finite fields
Michael Drmota[1]; Georg Gutenbrunner[1]
- [1] Inst. of Discrete Math. and Geometry TU Wien Wiedner Hauptstr. 8–10 A-1040 Wien, Austria
Journal de Théorie des Nombres de Bordeaux (2005)
- Volume: 17, Issue: 1, page 125-150
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topDrmota, Michael, and Gutenbrunner, Georg. "The joint distribution of $Q$-additive functions on polynomials over finite fields." Journal de Théorie des Nombres de Bordeaux 17.1 (2005): 125-150. <http://eudml.org/doc/249423>.
@article{Drmota2005,
abstract = {Let $K$ be a finite field and $Q \in K[T]$ a polynomial of positive degree. A function $f$ on $K[T]$ is called (completely) $Q$-additive if $f(A +BQ) = f(A) + f(B)$, where $A, B \in K[T]$ and $\deg (A) < \deg (Q)$. We prove that the values $(f_1(A), \ldots , f_d(A))$ are asymptotically equidistributed on the (finite) image set $\lbrace (f_1(A), \ldots ,$$ f_d(A)) : A \in K[T]\rbrace $ if $Q_j$ are pairwise coprime and $f_j:K[T]\rightarrow K[T]$ are $Q_j$-additive. Furthermore, it is shown that $(g_1(A), g_2(A))$ are asymptotically independent and Gaussian if $g_1,g_2:K[T]\rightarrow \mathbb\{R\}$ are $Q_1$- resp. $Q_2$-additive.},
affiliation = {Inst. of Discrete Math. and Geometry TU Wien Wiedner Hauptstr. 8–10 A-1040 Wien, Austria; Inst. of Discrete Math. and Geometry TU Wien Wiedner Hauptstr. 8–10 A-1040 Wien, Austria},
author = {Drmota, Michael, Gutenbrunner, Georg},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {-additive functions; polynomials over finite fields; distribution of -additive functions; joint distribution; convergence to the Gaussian normal distribution; correlation functions},
language = {eng},
number = {1},
pages = {125-150},
publisher = {Université Bordeaux 1},
title = {The joint distribution of $Q$-additive functions on polynomials over finite fields},
url = {http://eudml.org/doc/249423},
volume = {17},
year = {2005},
}
TY - JOUR
AU - Drmota, Michael
AU - Gutenbrunner, Georg
TI - The joint distribution of $Q$-additive functions on polynomials over finite fields
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2005
PB - Université Bordeaux 1
VL - 17
IS - 1
SP - 125
EP - 150
AB - Let $K$ be a finite field and $Q \in K[T]$ a polynomial of positive degree. A function $f$ on $K[T]$ is called (completely) $Q$-additive if $f(A +BQ) = f(A) + f(B)$, where $A, B \in K[T]$ and $\deg (A) < \deg (Q)$. We prove that the values $(f_1(A), \ldots , f_d(A))$ are asymptotically equidistributed on the (finite) image set $\lbrace (f_1(A), \ldots ,$$ f_d(A)) : A \in K[T]\rbrace $ if $Q_j$ are pairwise coprime and $f_j:K[T]\rightarrow K[T]$ are $Q_j$-additive. Furthermore, it is shown that $(g_1(A), g_2(A))$ are asymptotically independent and Gaussian if $g_1,g_2:K[T]\rightarrow \mathbb{R}$ are $Q_1$- resp. $Q_2$-additive.
LA - eng
KW - -additive functions; polynomials over finite fields; distribution of -additive functions; joint distribution; convergence to the Gaussian normal distribution; correlation functions
UR - http://eudml.org/doc/249423
ER -
References
top- N. L. Bassily, I. Kátai, Distribution of the values of -additive functions on polynomial sequences. Acta Math. Hung. 68 (1995), 353–361. Zbl0832.11035MR1333478
- Mireille Car, Sommes de puissances et d’irréductibles dans . Acta Arith. 44 (1984), 7–34. Zbl0498.12016MR765244
- J. Coquet, Corrélation de suites arithmétiques. Sémin. Delange-Pisot-Poitou, 20e Année 1978/79, Exp. 15, 12 p. (1980). Zbl0432.10031MR582427
- H. DelangeSur les fonctions -additives ou -multiplicatives. Acta Arith. 21 (1972), 285-298. Zbl0219.10062MR309891
- H. DelangeSur la fonction sommatoire de la fonction ”Somme de Chiffres”. L’Enseignement math. 21 (1975), 31–77. Zbl0306.10005MR379414
- M. Drmota, The joint distribution of -additive functions. Acta Arith. 100 (2001), 17–39. Zbl1057.11006MR1864623
- M. Drmota, J. Gajdosik, The distribution of the sum-of-digits function. J. Theor. Nombres Bordx. 10 (1998), 17–32. Zbl0916.11049MR1827283
- J. M. Dumont, A. Thomas, Gaussian asymptotic properties of the sum-of-digits functions. J. Number Th. 62 (1997), 19–38. Zbl0869.11009MR1430000
- P. J. Grabner, P. Kirschenhofer, H. Prodinger, R. F. Tichy, On the moments of the sum-of-digits function. in: Applications of Fibonacci Numbers 5 (1993), 263–271 Zbl0797.11012MR1271366
- G.W. Effinger, D. R. Hayes, Additive number theory of polynomials over a finite field. Oxford University Press, New York, 1991. Zbl0759.11032MR1143282
- I. Kátai, Distribution of -additive function. Probability theory and applications, Essays to the Mem. of J. Mogyorodi, Math. Appl. 80 (1992), Kluwer, Dortrecht, 309–318. Zbl0774.11043MR1211916
- R. E. Kennedy, C. N. Cooper, An extension of a theorem by Cheo and Yien concerning digital sums. Fibonacci Q. 29 (1991), 145–149. Zbl0728.11004MR1119401
- D.-H. Kim, On the joint distribution of q-additive functions in residue classes . J. Number Theory 74 (1999), 307 – 336. Zbl0920.11067MR1671677
- P. Kirschenhofer, On the variance of the sum of digits function. Lecture Notes Math. 1452 (1990), 112–116. Zbl0714.11005MR1084640
- E. Manstavičius, Probabilistic theory of additive functions related to systems of numerations. Analytic and Probabilistic Methods in Number Theory, VSP, Utrecht 1997, 413–430. Zbl0964.11031MR1653626
- R. C. Mason, Diophantine Equations over Function Fields. London Math. Soc. Lecture Notes 96, Cambridge University Press, 1984. Zbl0533.10012MR754559
- W. Steiner, On the joint distribution of q-additive functions on polynomial sequences, Theory of Stochastic Processes 8 (24) (2002), 336–357. Zbl1036.11046MR2027406
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.