The joint distribution of Q -additive functions on polynomials over finite fields

Michael Drmota[1]; Georg Gutenbrunner[1]

  • [1] Inst. of Discrete Math. and Geometry TU Wien Wiedner Hauptstr. 8–10 A-1040 Wien, Austria

Journal de Théorie des Nombres de Bordeaux (2005)

  • Volume: 17, Issue: 1, page 125-150
  • ISSN: 1246-7405

Abstract

top
Let K be a finite field and Q K [ T ] a polynomial of positive degree. A function f on K [ T ] is called (completely) Q -additive if f ( A + B Q ) = f ( A ) + f ( B ) , where A , B K [ T ] and deg ( A ) < deg ( Q ) . We prove that the values ( f 1 ( A ) , ... , f d ( A ) ) are asymptotically equidistributed on the (finite) image set { ( f 1 ( A ) , ... , f d ( A ) ) : A K [ T ] } if Q j are pairwise coprime and f j : K [ T ] K [ T ] are Q j -additive. Furthermore, it is shown that ( g 1 ( A ) , g 2 ( A ) ) are asymptotically independent and Gaussian if g 1 , g 2 : K [ T ] are Q 1 - resp. Q 2 -additive.

How to cite

top

Drmota, Michael, and Gutenbrunner, Georg. "The joint distribution of $Q$-additive functions on polynomials over finite fields." Journal de Théorie des Nombres de Bordeaux 17.1 (2005): 125-150. <http://eudml.org/doc/249423>.

@article{Drmota2005,
abstract = {Let $K$ be a finite field and $Q \in K[T]$ a polynomial of positive degree. A function $f$ on $K[T]$ is called (completely) $Q$-additive if $f(A +BQ) = f(A) + f(B)$, where $A, B \in K[T]$ and $\deg (A) &lt; \deg (Q)$. We prove that the values $(f_1(A), \ldots , f_d(A))$ are asymptotically equidistributed on the (finite) image set $\lbrace (f_1(A), \ldots ,$$ f_d(A)) : A \in K[T]\rbrace $ if $Q_j$ are pairwise coprime and $f_j:K[T]\rightarrow K[T]$ are $Q_j$-additive. Furthermore, it is shown that $(g_1(A), g_2(A))$ are asymptotically independent and Gaussian if $g_1,g_2:K[T]\rightarrow \mathbb\{R\}$ are $Q_1$- resp. $Q_2$-additive.},
affiliation = {Inst. of Discrete Math. and Geometry TU Wien Wiedner Hauptstr. 8–10 A-1040 Wien, Austria; Inst. of Discrete Math. and Geometry TU Wien Wiedner Hauptstr. 8–10 A-1040 Wien, Austria},
author = {Drmota, Michael, Gutenbrunner, Georg},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {-additive functions; polynomials over finite fields; distribution of -additive functions; joint distribution; convergence to the Gaussian normal distribution; correlation functions},
language = {eng},
number = {1},
pages = {125-150},
publisher = {Université Bordeaux 1},
title = {The joint distribution of $Q$-additive functions on polynomials over finite fields},
url = {http://eudml.org/doc/249423},
volume = {17},
year = {2005},
}

TY - JOUR
AU - Drmota, Michael
AU - Gutenbrunner, Georg
TI - The joint distribution of $Q$-additive functions on polynomials over finite fields
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2005
PB - Université Bordeaux 1
VL - 17
IS - 1
SP - 125
EP - 150
AB - Let $K$ be a finite field and $Q \in K[T]$ a polynomial of positive degree. A function $f$ on $K[T]$ is called (completely) $Q$-additive if $f(A +BQ) = f(A) + f(B)$, where $A, B \in K[T]$ and $\deg (A) &lt; \deg (Q)$. We prove that the values $(f_1(A), \ldots , f_d(A))$ are asymptotically equidistributed on the (finite) image set $\lbrace (f_1(A), \ldots ,$$ f_d(A)) : A \in K[T]\rbrace $ if $Q_j$ are pairwise coprime and $f_j:K[T]\rightarrow K[T]$ are $Q_j$-additive. Furthermore, it is shown that $(g_1(A), g_2(A))$ are asymptotically independent and Gaussian if $g_1,g_2:K[T]\rightarrow \mathbb{R}$ are $Q_1$- resp. $Q_2$-additive.
LA - eng
KW - -additive functions; polynomials over finite fields; distribution of -additive functions; joint distribution; convergence to the Gaussian normal distribution; correlation functions
UR - http://eudml.org/doc/249423
ER -

References

top
  1. N. L. Bassily, I. Kátai, Distribution of the values of q -additive functions on polynomial sequences. Acta Math. Hung. 68 (1995), 353–361. Zbl0832.11035MR1333478
  2. Mireille Car, Sommes de puissances et d’irréductibles dans F q [ X ] . Acta Arith. 44 (1984), 7–34. Zbl0498.12016MR765244
  3. J. Coquet, Corrélation de suites arithmétiques. Sémin. Delange-Pisot-Poitou, 20e Année 1978/79, Exp. 15, 12 p. (1980). Zbl0432.10031MR582427
  4. H. DelangeSur les fonctions q -additives ou q -multiplicatives. Acta Arith. 21 (1972), 285-298. Zbl0219.10062MR309891
  5. H. DelangeSur la fonction sommatoire de la fonction ”Somme de Chiffres”. L’Enseignement math. 21 (1975), 31–77. Zbl0306.10005MR379414
  6. M. Drmota, The joint distribution of q -additive functions. Acta Arith. 100 (2001), 17–39. Zbl1057.11006MR1864623
  7. M. Drmota, J. Gajdosik, The distribution of the sum-of-digits function. J. Theor. Nombres Bordx. 10 (1998), 17–32. Zbl0916.11049MR1827283
  8. J. M. Dumont, A. Thomas, Gaussian asymptotic properties of the sum-of-digits functions. J. Number Th. 62 (1997), 19–38. Zbl0869.11009MR1430000
  9. P. J. Grabner, P. Kirschenhofer, H. Prodinger, R. F. Tichy, On the moments of the sum-of-digits function. in: Applications of Fibonacci Numbers 5 (1993), 263–271 Zbl0797.11012MR1271366
  10. G.W. Effinger, D. R. Hayes, Additive number theory of polynomials over a finite field. Oxford University Press, New York, 1991. Zbl0759.11032MR1143282
  11. I. Kátai, Distribution of q -additive function. Probability theory and applications, Essays to the Mem. of J. Mogyorodi, Math. Appl. 80 (1992), Kluwer, Dortrecht, 309–318. Zbl0774.11043MR1211916
  12. R. E. Kennedy, C. N. Cooper, An extension of a theorem by Cheo and Yien concerning digital sums. Fibonacci Q. 29 (1991), 145–149. Zbl0728.11004MR1119401
  13. D.-H. Kim, On the joint distribution of q-additive functions in residue classes . J. Number Theory 74 (1999), 307 – 336. Zbl0920.11067MR1671677
  14. P. Kirschenhofer, On the variance of the sum of digits function. Lecture Notes Math. 1452 (1990), 112–116. Zbl0714.11005MR1084640
  15. E. Manstavičius, Probabilistic theory of additive functions related to systems of numerations. Analytic and Probabilistic Methods in Number Theory, VSP, Utrecht 1997, 413–430. Zbl0964.11031MR1653626
  16. R. C. Mason, Diophantine Equations over Function Fields. London Math. Soc. Lecture Notes 96, Cambridge University Press, 1984. Zbl0533.10012MR754559
  17. W. Steiner, On the joint distribution of q-additive functions on polynomial sequences, Theory of Stochastic Processes 8 (24) (2002), 336–357. Zbl1036.11046MR2027406

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.