On computing subfields. A detailed description of the algorithm
Journal de théorie des nombres de Bordeaux (1998)
- Volume: 10, Issue: 2, page 243-271
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topKlüners, Jürgen. "On computing subfields. A detailed description of the algorithm." Journal de théorie des nombres de Bordeaux 10.2 (1998): 243-271. <http://eudml.org/doc/248167>.
@article{Klüners1998,
abstract = {Let $\mathbb \{Q\}\{(\alpha )\}$ be an algebraic number field given by the minimal polynomial $f$ of $\alpha $. We want to determine all subfields $\mathbb \{Q\}\{(\beta )\} \subset \mathbb \{Q\}\{(\alpha )\}$ of given degree. It is convenient to describe each subfield by a pair $(g , h) \in \mathbb \{Z\} [t] \times \mathbb \{Q\}[t]$ such that $g$ is the minimal polynomial of $\beta = h(\alpha )$. There is a bijection between the block systems of the Galois group of $f$ and the subfields of $\mathbb \{Q\}\{(\alpha )\}$. These block systems are computed using cyclic subgroups of the Galois group which we get from the Dedekind criterion. When a block system is known we compute the corresponding subfield using $p$-adic methods. We give a detailed description for all parts of the algorithm.},
author = {Klüners, Jürgen},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {subfields; block systems},
language = {eng},
number = {2},
pages = {243-271},
publisher = {Université Bordeaux I},
title = {On computing subfields. A detailed description of the algorithm},
url = {http://eudml.org/doc/248167},
volume = {10},
year = {1998},
}
TY - JOUR
AU - Klüners, Jürgen
TI - On computing subfields. A detailed description of the algorithm
JO - Journal de théorie des nombres de Bordeaux
PY - 1998
PB - Université Bordeaux I
VL - 10
IS - 2
SP - 243
EP - 271
AB - Let $\mathbb {Q}{(\alpha )}$ be an algebraic number field given by the minimal polynomial $f$ of $\alpha $. We want to determine all subfields $\mathbb {Q}{(\beta )} \subset \mathbb {Q}{(\alpha )}$ of given degree. It is convenient to describe each subfield by a pair $(g , h) \in \mathbb {Z} [t] \times \mathbb {Q}[t]$ such that $g$ is the minimal polynomial of $\beta = h(\alpha )$. There is a bijection between the block systems of the Galois group of $f$ and the subfields of $\mathbb {Q}{(\alpha )}$. These block systems are computed using cyclic subgroups of the Galois group which we get from the Dedekind criterion. When a block system is known we compute the corresponding subfield using $p$-adic methods. We give a detailed description for all parts of the algorithm.
LA - eng
KW - subfields; block systems
UR - http://eudml.org/doc/248167
ER -
References
top- [1] D. Casperson, D. Ford, J. McKay, Ideal decompositions and subfields. J. Symbolic Comput.21 (1996), 133-137. Zbl0849.68071MR1394600
- [2] J.W.S. Cassels, Local Fields. Cambridge University Press, 1986. Zbl0595.12006MR861410
- [3] H. Cohen, F. Diaz y Diaz, A polynomial reduction algorithm. Sem. Theor. Nombres Bordeaux (2) 3 (1991), no. 2, 351-360. Zbl0758.11053MR1149802
- [4] Henri Cohen, A.Course in Computational Algebraic Number Theory. Graduate Texts in Mathematics, 138. Springer-Verlag, Berlin, 1993. Zbl0786.11071MR1228206
- [5] G.E. Collins, M.E. Encarnación, Efficient rational number reconstruction. J. Symbolic Comput20 (1995), 287-297. Zbl0851.68037MR1378101
- [6] Mario Daberkow, Claus Fieker, Jürgen Klüners, Michael Pohst, Katherine Roegner, Klaus Wildanger, KANT V4. J. Symbolic Comput. 24 (1997), 267-283. Zbl0886.11070MR1484479
- [7] F. Diaz y Diaz, M. Olivier, Imprimitive ninth-degree number fields with small discriminants. Math. Comput.64 (1995), no. 209, 305-321. Zbl0819.11070MR1260128
- [8] J. Dixon, Computing subfields in algebraic number fields. J. Austral. Math. Soc. Ser. A49 (1990), 434-448. Zbl0727.11049MR1074513
- [9] A. Hulpke, Block systems of a Galois group. Experiment. Math.4 (1995), no. 1, 1-9. Zbl0976.12006MR1359413
- [10] J. Klüners, Über die Berechnung von Teilkörpern algebraischer Zahlkörper. Diplomarbeit, Technische UniversitätBerlin, 1995.
- [11] J. Klilners, Über die Berechnung von Automorphismen und Teilkörpern algebraischer Zahlkörper. Dissertation, Technische UniversitätBerlin, 1997. Zbl0912.11059
- [12] J. Klüners M. Pohst, On computing subfields. J. Symbolic Comput.24 (1997), 385-397. Zbl0886.11072MR1484487
- [13] S. Landau, Factoring polynomials over algebraic number fields. SIAM J. Comput.14 (1985), no. 1, 184-195. Zbl0565.12002MR774938
- [14] S. Landau, G.L. Miller, Solvability by radicals is in polynomial time. J. Comput. System Sci.30 (1985), no. 2, 179-208. Zbl0586.12002MR801822
- [15] D. Lazard, A. Valibouze, Computing subfields: Reverse of the primitive element problem. In A. Galligo F. Eyssete, editor, MEGA-92, Computational algebraic geometry, volume 109, pages 163-176. Birkhäuser, Boston, 1993. Zbl0798.12002MR1230864
- [16] M. Mignotte, An inequality about factors of polynomials. Math. Comput.28 (1974), no. 128, 1153-1157. Zbl0299.12101MR354624
- [17] W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers. Springer-Verlag, 1990. Zbl1159.11039MR1055830
- [18] M.E. Pohst, H. Zassenhaus, Algorithmic Algebraic Number Theory. Encyclopedia of Mathematics and its Applications, 30. Cambridge University Press, Cambridge1989 Zbl0685.12001MR1033013
- [19] P.J. Weinberger, L. Rothschild, Factoring polynomials over algebraic number fields. ACM Trans. Math. Software2 (1976), no. 4, 335-350. Zbl0352.12003MR450225
- [20] H. Wielandt, Finite Permutation Groups. Academic Press, New York-London1964. Zbl0138.02501MR183775
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.