Involutory elliptic curves over 𝔽 q ( T )

Andreas Schweizer

Journal de théorie des nombres de Bordeaux (1998)

  • Volume: 10, Issue: 1, page 107-123
  • ISSN: 1246-7405

Abstract

top
For n 𝔽 q [ T ] let G be a subgroup of the Atkin-Lehner involutions of the Drinfeld modular curve X 0 ( 𝔫 ) . We determine all 𝔫 and G for which the quotient curve G X 0 ( 𝔫 ) is rational or elliptic.

How to cite

top

Schweizer, Andreas. "Involutory elliptic curves over $\mathbb {F}_q(T)$." Journal de théorie des nombres de Bordeaux 10.1 (1998): 107-123. <http://eudml.org/doc/248173>.

@article{Schweizer1998,
abstract = {For $n \in \mathbb \{F\}_q [T]$ let $G$ be a subgroup of the Atkin-Lehner involutions of the Drinfeld modular curve $X_0 (\mathfrak \{n\})$. We determine all $\mathfrak \{n\}$ and $G$ for which the quotient curve $G \setminus X_0 (\mathfrak \{n\})$ is rational or elliptic.},
author = {Schweizer, Andreas},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {Drinfeld modular curve; involutory elliptic curves; genus},
language = {eng},
number = {1},
pages = {107-123},
publisher = {Université Bordeaux I},
title = {Involutory elliptic curves over $\mathbb \{F\}_q(T)$},
url = {http://eudml.org/doc/248173},
volume = {10},
year = {1998},
}

TY - JOUR
AU - Schweizer, Andreas
TI - Involutory elliptic curves over $\mathbb {F}_q(T)$
JO - Journal de théorie des nombres de Bordeaux
PY - 1998
PB - Université Bordeaux I
VL - 10
IS - 1
SP - 107
EP - 123
AB - For $n \in \mathbb {F}_q [T]$ let $G$ be a subgroup of the Atkin-Lehner involutions of the Drinfeld modular curve $X_0 (\mathfrak {n})$. We determine all $\mathfrak {n}$ and $G$ for which the quotient curve $G \setminus X_0 (\mathfrak {n})$ is rational or elliptic.
LA - eng
KW - Drinfeld modular curve; involutory elliptic curves; genus
UR - http://eudml.org/doc/248173
ER -

References

top
  1. [A&L] A.O. Atkin and J. Lehner, Hecke Operators on Γ0(m), Math. Annalen185 (1970), 134-160. Zbl0177.34901
  2. [Ge1] E.-U. Gekeler, Drinfeld-Moduln und modulare Formen über rationalen Funktionenkörpem, Bonner Mathematische Schriften119 (1980). Zbl0446.14018MR594434
  3. [Ge2] E.-U. Gekeler, Automorphe Formen über Fq (T) mit kleinem Führer, Abh. Math. Sem. Univ. Hamburg55 (1985), 111-146. Zbl0564.10026MR831522
  4. [Ge3] E.-U. Gekeler, Analytical Construction of Weil Curves over Function Fields, J. Théor. Nombres Bordeaux7 (1995), 27-49. Zbl0846.11037MR1413565
  5. [G&N] E.-U. Gekeler and U. Nonnengardt, Fundamental domains of some arithmetic groups over function fields, Internat. J. Math.6 (1995), 689-708. Zbl0858.11025MR1351161
  6. [G&R] E.-U. Gekeler and M. Reversat, Jacobians of Drinfeld Modular Curves, J. Reine Angew. Math.476 (1996), 27-93. Zbl0848.11029MR1401696
  7. [Ke] M. Kenku, A note on involutory Weil curves, Quat. J. Math. Oxford (Ser. 2) 27 (1976), 401-405. Zbl0355.14014MR437460
  8. [Kl] P.G. Kluit, On the normalizer of ro(N). Modular Functions of one Variable V, SpringerLNM601, BerlinHeidelbergNew York1977, 239-246. Zbl0355.10020MR480340
  9. [M&SD] B. Mazur and P. Swinnerton-Dyer, Arithmetic of Weil Curves, Invent. Math.25 (1974), 1-61. Zbl0281.14016MR354674
  10. [Sch1] A. Schweizer, Zur Arithmetik der Drinfeld'schen Modulkurven X0(n), Dissertation, Saarbrücken1996 
  11. [Sch2] A. Schweizer, Modular automorphisms of the Drinfeld modular curves X0(n), Collect. Math.48 (1997), 209-216. Zbl0865.11051MR1464024
  12. [Sch3] A. Schweizer, Hyperelliptic Drinfeld Modular Curves, in: Drinfeld modules, modular schemes and applications, Proceedings of a workshop at Alden Biesen, September 9-14, 1996, (E.-U. Gekeler, M. van der Put, M. Reversat, J. Van Geel, eds.), World Scientific, Singapore, 1997, pp. 330-343 Zbl0930.11039MR1630612

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.