Fixed point theory for compact perturbations of pseudocontractive maps

Donal O'Regan

Archivum Mathematicum (1998)

  • Volume: 034, Issue: 3, page 401-415
  • ISSN: 0044-8753

Abstract

top
Some new fixed point results are established for mappings of the form F 1 + F 2 with F 2 compact and F 1 pseudocontractive.

How to cite

top

O'Regan, Donal. "Fixed point theory for compact perturbations of pseudocontractive maps." Archivum Mathematicum 034.3 (1998): 401-415. <http://eudml.org/doc/248179>.

@article{ORegan1998,
abstract = {Some new fixed point results are established for mappings of the form $\,F_1+F_2\,$ with $\,F_2\,$ compact and $\,F_1\,$ pseudocontractive.},
author = {O'Regan, Donal},
journal = {Archivum Mathematicum},
keywords = {fixed points; pseudocontractive maps; fixed points; pseudocontractive maps; compact; nonlinear Leray-Schauder type alternative},
language = {eng},
number = {3},
pages = {401-415},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Fixed point theory for compact perturbations of pseudocontractive maps},
url = {http://eudml.org/doc/248179},
volume = {034},
year = {1998},
}

TY - JOUR
AU - O'Regan, Donal
TI - Fixed point theory for compact perturbations of pseudocontractive maps
JO - Archivum Mathematicum
PY - 1998
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 034
IS - 3
SP - 401
EP - 415
AB - Some new fixed point results are established for mappings of the form $\,F_1+F_2\,$ with $\,F_2\,$ compact and $\,F_1\,$ pseudocontractive.
LA - eng
KW - fixed points; pseudocontractive maps; fixed points; pseudocontractive maps; compact; nonlinear Leray-Schauder type alternative
UR - http://eudml.org/doc/248179
ER -

References

top
  1. Banas J., Goebel K., Measures of noncompactness in Banach spaces, Marcel Dekker, New York, 1980. (1980) Zbl0441.47056MR0591679
  2. Browder F. E., Nonlinear operators and nonlinear equations of evolution in Banach spaces, Proc. Symp. Pure Math, 18, Part II, Amer. Math. Soc., Providence, 1976. (1976) Zbl0327.47022MR0405188
  3. Day M., Normed linear spaces, Springer Verlag, Berlin, 1973. (1973) Zbl0268.46013MR0344849
  4. Deimling K., Ordinary differential equations in Banach spaces, Springer, 596, 1977. (1977) Zbl0361.34050MR0463601
  5. Deimling K., Zeros of accretive operators, Manuscripta Math., 13(1974), 365–374. (1974) Zbl0288.47047MR0350538
  6. Dugundji J., Granas A., Fixed point theory, Monografie Mat., PWN, Warsaw, 1982. (1982) Zbl0483.47038MR0660439
  7. Furi M., Pera P., A continuation method on locally convex spaces and applications to ordinary differential equations on noncompact intervals, Ann. Polon. Math., 47(1987), 331–346. (1987) Zbl0656.47052MR0927581
  8. Gatica J. A., Kirk W. A., Fixed point theorems for contractive mappings with applications to nonexpansive and pseudo–contractive mappings, Rocky Mount. J. Math., 4(1974), 69–79. (1974) MR0331136
  9. Granas A., Sur la méthode de continuité de Poincare, C.R. Acad. Sci. Paris, 282(1976), 983–985. (1976) Zbl0348.47039MR0407894
  10. Kirk W. A., Schöneberg R., Some results on pseudo–contractive mappings, Pacific Jour. Math., 71(1977), 89–100. (1977) Zbl0362.47023MR0487615
  11. Krawcewicz W., Contribution à la théorie des équations nonlinéaires dan les espaces de Banach, Dissertationes Matematicae, 273(1988). (1988) MR0989165
  12. O’Regan D., Theory of singular boundary value problems, World Scientific Press, Singapore, 1994. (1994) Zbl0807.34028MR1286741
  13. O’Regan D., Some fixed point theorems for concentrative mappings between locally convex linear topological spaces, Jour. Nonlinear Anal., 27(1996), 1437–1446. (1996) Zbl0874.47035MR1408881
  14. O’Regan D., Continuation fixed point theorems for locally convex linear topological spaces, Mathematical and Computer Modelling, 24(1996), 57–70. (1996) Zbl0896.47045MR1408382
  15. Petryshyn W. V., Structure of the fixed point set of k –set contractions, Arch. Rational Mech. Anal., 40(1970/71), 312–328. (1970) MR0273480
  16. Precup R., A Granas type approach to some continuation theorems and periodic boundary value problems with impulses, preprint. Zbl0847.34028
  17. Schöneberg R., On the domain invariance theorem for accretive mappings, J. London Math. Soc., 24(1981), 548–554. (1981) MR0635886
  18. Zeidler E., Nonlinear functional analysis and its applications, Vol I, Springer, New York, 1986. (1986) Zbl0583.47050MR0816732

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.