Higher order contact of real curves in a real hyperquadric. II
Archivum Mathematicum (1998)
- Volume: 034, Issue: 3, page 361-377
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topVillarroel, Yuli. "Higher order contact of real curves in a real hyperquadric. II." Archivum Mathematicum 034.3 (1998): 361-377. <http://eudml.org/doc/248181>.
@article{Villarroel1998,
abstract = {Let $\Phi $ be an Hermitian quadratic form, of maximal rank and index $(n,1)$, defined over a complex $(n+1)$ vector space $V$. Consider the real
hyperquadric defined in the complex projective space $P^nV$ by \[ Q=\lbrace [\varsigma ]\in P^nV,\;\Phi (\varsigma )=0\rbrace . \]
Let $G$ be the subgroup of the special linear group which leaves $ Q $ invariant and $D$ the $(2n)-$ distribution defined by the Cauchy Riemann structure induced over $Q$. We study the real regular curves of constant type in $Q$, tangent to $D$, finding a complete system of analytic invariants for two curves to be locally equivalent under transformations of $G$.},
author = {Villarroel, Yuli},
journal = {Archivum Mathematicum},
keywords = {geometric structures on manifolds; local submanifolds; contacttheory; actions of groups; contact theory; group action; real hyperquadric; moving frame},
language = {eng},
number = {3},
pages = {361-377},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Higher order contact of real curves in a real hyperquadric. II},
url = {http://eudml.org/doc/248181},
volume = {034},
year = {1998},
}
TY - JOUR
AU - Villarroel, Yuli
TI - Higher order contact of real curves in a real hyperquadric. II
JO - Archivum Mathematicum
PY - 1998
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 034
IS - 3
SP - 361
EP - 377
AB - Let $\Phi $ be an Hermitian quadratic form, of maximal rank and index $(n,1)$, defined over a complex $(n+1)$ vector space $V$. Consider the real
hyperquadric defined in the complex projective space $P^nV$ by \[ Q=\lbrace [\varsigma ]\in P^nV,\;\Phi (\varsigma )=0\rbrace . \]
Let $G$ be the subgroup of the special linear group which leaves $ Q $ invariant and $D$ the $(2n)-$ distribution defined by the Cauchy Riemann structure induced over $Q$. We study the real regular curves of constant type in $Q$, tangent to $D$, finding a complete system of analytic invariants for two curves to be locally equivalent under transformations of $G$.
LA - eng
KW - geometric structures on manifolds; local submanifolds; contacttheory; actions of groups; contact theory; group action; real hyperquadric; moving frame
UR - http://eudml.org/doc/248181
ER -
References
top- Bredon G. E., Introduction to Compact Transformations groups, Academic. Press, New York (1972). (1972) MR0413144
- Cartan E., Sur la géométrie pseudo-conforme des hypersurfaces de deux variables complexes, I. II, Ouvres II, 2, 1231-1304; ibid III,2, 1217-1238.
- Cartan E., Théorie des groupes finis el la géométrie différentielle traitées par la Methode du repère mobile, Gauthier-Villars, Paris, (1937). (1937)
- Chern S. S., Moser J. K., Real hypersurfaces in complex manifolds, Acta mathematica 133(1975), 219-271. (1975) Zbl0302.32015MR0425155
- Chern S. S., Cowen J. M., Frenet frames along holomorphic curves, Topics in Differential Geometry, 1972-1973, 191-203. Dekker, New York, 1974. (1972) MR0361170
- Ehresmann C., Les prolongements d’un space fibré diferéntiable, C.R. Acad. Sci. Paris, 240(1955), 1755-1757. (1955) MR0071083
- Green M. L., The moving frame, Differential invariants and rigity theorems for curves in homogeneous spaces, Duke Math. Journal, Vol 45, No.4 (1978), 735-779. (1978) MR0518104
- Griffiths P., On Cartan’s method of Lie groups and moving frames as applied to existence and uniqueness questions in differential geometry, Duke Math. J. 41(1974), 775-814. (1974) MR0410607
- Hermann R., Equivalence invariants for submanifolds of Homogeneous Spaces, Math. Annalen 158(1965), 284-289. (1965) Zbl0125.39502MR0203653
- Hermann R., Existence in the large of parallelism homomorphisms, Trans. Am. Math. Soc. 108, 170-183 (1963). (1963) MR0151924
- Jensen G. R., Higher Order Contact of Submanifolds of Homogeneous Spaces, Lectures notes in Math. Vol. 610, Springer-Verlag, New York (1977). (1977) Zbl0356.53005MR0500648
- Jensen G. R., Deformation of submanifolds of homogeneous spaces, J. of Diff. Geometry, 16(1981), 213-246. (1981) Zbl0473.53044MR0638789
- Kolář I., Canonical forms on the prolongations of principle fibre bundles, Rev. Roum. Math. Pures et Appl., Bucarest, Tome XVI, No.7 (1971), 1091-1106. (1971) MR0301668
- Rodrigues A. M., Contact and equivalence of submanifolds of homogeneous spaces, aspects of Math. and its Applications, Elsevier Science Publishers B.V. (1986). (1986) MR2342861
- Villarroel Y., Differential Geometry and Applications, Proc. Conf. Brno (1996), 207-214. (1996) MR1406339
- Villarroel Y., Higher order contact of real curves in a real hyperquadric, Archivum mathematicum, Tomus 32(1996), 57-73. (1996) Zbl0870.53025MR1399840
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.