A basic inequality of submanifolds in quaternionic space forms.
Almost c-spinorial geometry arises as an interesting example of the metrisability problem for parabolic geometries. It is a complex analogue of real spinorial geometry. In this paper, we first define the type of parabolic geometry in question, then we discuss its underlying geometry and its homogeneous model. We compute irreducible components of the harmonic curvature and discuss the conditions for regularity. In the second part of the paper, we describe the linearisation of the metrisability problem...
On a symplectic manifold, there is a natural elliptic complex replacing the de Rham complex. It can be coupled to a vector bundle with connection and, when the curvature of this connection is constrained to be a multiple of the symplectic form, we find a new complex. In particular, on complex projective space with its Fubini–Study form and connection, we can build a series of differential complexes akin to the Bernstein–Gelfand–Gelfand complexes from parabolic differential geometry.