Classical differential geometry with Christoffel symbols of Ehresmann -connections
Archivum Mathematicum (1998)
- Volume: 034, Issue: 2, page 229-237
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topOrtaçgil, Ercüment. "Classical differential geometry with Christoffel symbols of Ehresmann $\varepsilon $-connections." Archivum Mathematicum 034.2 (1998): 229-237. <http://eudml.org/doc/248195>.
@article{Ortaçgil1998,
abstract = {We give a method based on an idea of O. Veblen which gives explicit formulas for the covariant derivatives of natural objects in terms of the Christoffel symbols of a symmetric Ehresmann $\varepsilon $-connection.},
author = {Ortaçgil, Ercüment},
journal = {Archivum Mathematicum},
keywords = {covariant differentiation; Christoffel symbols; covariant differentiation; Christoffel symbols},
language = {eng},
number = {2},
pages = {229-237},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Classical differential geometry with Christoffel symbols of Ehresmann $\varepsilon $-connections},
url = {http://eudml.org/doc/248195},
volume = {034},
year = {1998},
}
TY - JOUR
AU - Ortaçgil, Ercüment
TI - Classical differential geometry with Christoffel symbols of Ehresmann $\varepsilon $-connections
JO - Archivum Mathematicum
PY - 1998
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 034
IS - 2
SP - 229
EP - 237
AB - We give a method based on an idea of O. Veblen which gives explicit formulas for the covariant derivatives of natural objects in terms of the Christoffel symbols of a symmetric Ehresmann $\varepsilon $-connection.
LA - eng
KW - covariant differentiation; Christoffel symbols; covariant differentiation; Christoffel symbols
UR - http://eudml.org/doc/248195
ER -
References
top- Relativity and Modern Physics, Harvard Press, 1923.
- Sur une généralisation de la notion de courbure de Riemann et les espaces à torsion, C.R. Acad. Sci. Paris 174, 1922, p. 522.
- Covariant differentiation, Quart. J. Math. Oxford Ser. 13, 1962, 285-298. Zbl0123.15402MR0146763
- Sur les connexions d’ordre superieur, Atti del V Congresso del Unione Mat. Ital., 1955, 344-346.
- Riemannian Geometry, Princeton Univ. Press, 1926. Zbl1141.53002MR1487892
- The integrability problem for G-structures, Trans. A.M.S., 116, 1965, 544-560. Zbl0178.55702MR0203626
- On the absolute differentiation of geometric object fields, Annales Polonici Mathematici, 1973, 293-304. MR0326593
- Natural Operations in Differential Geometry, Springer-Verlag, Berlin, Heidelberg, 1993. MR1202431
- Connexions d’ordre superieur et tenseurs de structure, Atti del Convegno Internazionale di Geometria Differenziale, Bologna, 1967.
- Some remarks on the Christoffel symbols of Ehresmann -connections, 3 Meeting on Current Ideas in Mechanics and Related Fields, Segovia (Spain), June 19-23, 1995, Extracta Mathematicae Vol. II, Num. 1, 172–180 (1996). MR1424754
- On a differential sequence in geometry, Turkish Journal of Mathematics, 20 (1996), 473–479. MR1432875
- Lie Pseudogroups and Mechanics, Gordon and Breach, London, New York, 1988. Zbl0677.58003MR0954613
- Partial Differential Equations and Group Theory, Kluwer Academic Publishers, Dordrecht, Boston, London, 1994. Zbl0808.35002MR1308976
- Covariant differentiation of geometric objects, Rozprawy Mat. 56, Warszawa, 1967. Zbl0158.40101MR0238208
- Natural vector bundles and natural differential operators, American Journal of Math., 100, 1978, 775-828. Zbl0422.58001MR0509074
- Normal coordinates for the geometry of paths, Proc. N.A.S., Vol. 8, 1922, p. 192.
- The geometry of paths, Transaction of A.M.S., Vol. 25, 1923, 551-608. MR1501260
- Invariants of Quadratic Differential Forms, Cambridge Tract 24, University Press, Cambridge, 1927.
- Higher order frames and linear connections, Cahiers de Topologie et Geometrie Diff. 13 (3), 1971, 333-370. Zbl0222.53033MR0307102
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.