Classical differential geometry with Christoffel symbols of Ehresmann ε -connections

Ercüment Ortaçgil

Archivum Mathematicum (1998)

  • Volume: 034, Issue: 2, page 229-237
  • ISSN: 0044-8753

Abstract

top
We give a method based on an idea of O. Veblen which gives explicit formulas for the covariant derivatives of natural objects in terms of the Christoffel symbols of a symmetric Ehresmann ε -connection.

How to cite

top

Ortaçgil, Ercüment. "Classical differential geometry with Christoffel symbols of Ehresmann $\varepsilon $-connections." Archivum Mathematicum 034.2 (1998): 229-237. <http://eudml.org/doc/248195>.

@article{Ortaçgil1998,
abstract = {We give a method based on an idea of O. Veblen which gives explicit formulas for the covariant derivatives of natural objects in terms of the Christoffel symbols of a symmetric Ehresmann $\varepsilon $-connection.},
author = {Ortaçgil, Ercüment},
journal = {Archivum Mathematicum},
keywords = {covariant differentiation; Christoffel symbols; covariant differentiation; Christoffel symbols},
language = {eng},
number = {2},
pages = {229-237},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Classical differential geometry with Christoffel symbols of Ehresmann $\varepsilon $-connections},
url = {http://eudml.org/doc/248195},
volume = {034},
year = {1998},
}

TY - JOUR
AU - Ortaçgil, Ercüment
TI - Classical differential geometry with Christoffel symbols of Ehresmann $\varepsilon $-connections
JO - Archivum Mathematicum
PY - 1998
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 034
IS - 2
SP - 229
EP - 237
AB - We give a method based on an idea of O. Veblen which gives explicit formulas for the covariant derivatives of natural objects in terms of the Christoffel symbols of a symmetric Ehresmann $\varepsilon $-connection.
LA - eng
KW - covariant differentiation; Christoffel symbols; covariant differentiation; Christoffel symbols
UR - http://eudml.org/doc/248195
ER -

References

top
  1. Relativity and Modern Physics, Harvard Press, 1923. 
  2. Sur une généralisation de la notion de courbure de Riemann et les espaces à torsion, C.R. Acad. Sci. Paris 174, 1922, p. 522. 
  3. Covariant differentiation, Quart. J. Math. Oxford Ser. 13, 1962, 285-298. Zbl0123.15402MR0146763
  4. Sur les connexions d’ordre superieur, Atti del V Congresso del Unione Mat. Ital., 1955, 344-346. 
  5. Riemannian Geometry, Princeton Univ. Press, 1926. Zbl1141.53002MR1487892
  6. The integrability problem for G-structures, Trans. A.M.S., 116, 1965, 544-560. Zbl0178.55702MR0203626
  7. On the absolute differentiation of geometric object fields, Annales Polonici Mathematici, 1973, 293-304. MR0326593
  8. Natural Operations in Differential Geometry, Springer-Verlag, Berlin, Heidelberg, 1993. MR1202431
  9. Connexions d’ordre superieur et tenseurs de structure, Atti del Convegno Internazionale di Geometria Differenziale, Bologna, 1967. 
  10. Some remarks on the Christoffel symbols of Ehresmann ε -connections, 3 Meeting on Current Ideas in Mechanics and Related Fields, Segovia (Spain), June 19-23, 1995, Extracta Mathematicae Vol. II, Num. 1, 172–180 (1996). MR1424754
  11. On a differential sequence in geometry, Turkish Journal of Mathematics, 20 (1996), 473–479. MR1432875
  12. Lie Pseudogroups and Mechanics, Gordon and Breach, London, New York, 1988. Zbl0677.58003MR0954613
  13. Partial Differential Equations and Group Theory, Kluwer Academic Publishers, Dordrecht, Boston, London, 1994. Zbl0808.35002MR1308976
  14. Covariant differentiation of geometric objects, Rozprawy Mat. 56, Warszawa, 1967. Zbl0158.40101MR0238208
  15. Natural vector bundles and natural differential operators, American Journal of Math., 100, 1978, 775-828. Zbl0422.58001MR0509074
  16. Normal coordinates for the geometry of paths, Proc. N.A.S., Vol. 8, 1922, p. 192. 
  17. The geometry of paths, Transaction of A.M.S., Vol. 25, 1923, 551-608. MR1501260
  18. Invariants of Quadratic Differential Forms, Cambridge Tract 24, University Press, Cambridge, 1927. 
  19. Higher order frames and linear connections, Cahiers de Topologie et Geometrie Diff. 13 (3), 1971, 333-370. Zbl0222.53033MR0307102

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.