Covariant differentiation of geometric objects

A. Szybiak

  • Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1967

Abstract

top
CONTENTSI. Introduction................................................................................................................. 5II. Covariant differentiation in fibre bundles............................................................. 7III. Connection with the Lie derivation....................................................................... 16IV. Connections in the bundles of differential objects........................................... 19V. Definition of the covariant derivative in terms of functional equations........... 23Appendix. Outline of the theory of prolongations.................................................... 291. Invariance equations of geometric object............................................................ 302. Bases of linear forms and structure equations of fibre bundles.................... 313. Prolongations............................................................................................................ 33References.................................................................................................................... 36

How to cite

top

A. Szybiak. Covariant differentiation of geometric objects. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1967. <http://eudml.org/doc/268462>.

@book{A1967,
abstract = {CONTENTSI. Introduction................................................................................................................. 5II. Covariant differentiation in fibre bundles............................................................. 7III. Connection with the Lie derivation....................................................................... 16IV. Connections in the bundles of differential objects........................................... 19V. Definition of the covariant derivative in terms of functional equations........... 23Appendix. Outline of the theory of prolongations.................................................... 291. Invariance equations of geometric object............................................................ 302. Bases of linear forms and structure equations of fibre bundles.................... 313. Prolongations............................................................................................................ 33References.................................................................................................................... 36},
author = {A. Szybiak},
keywords = {differential geometry},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Covariant differentiation of geometric objects},
url = {http://eudml.org/doc/268462},
year = {1967},
}

TY - BOOK
AU - A. Szybiak
TI - Covariant differentiation of geometric objects
PY - 1967
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSI. Introduction................................................................................................................. 5II. Covariant differentiation in fibre bundles............................................................. 7III. Connection with the Lie derivation....................................................................... 16IV. Connections in the bundles of differential objects........................................... 19V. Definition of the covariant derivative in terms of functional equations........... 23Appendix. Outline of the theory of prolongations.................................................... 291. Invariance equations of geometric object............................................................ 302. Bases of linear forms and structure equations of fibre bundles.................... 313. Prolongations............................................................................................................ 33References.................................................................................................................... 36
LA - eng
KW - differential geometry
UR - http://eudml.org/doc/268462
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.