Covariant differentiation of geometric objects
- Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1967
Access Full Book
topAbstract
topHow to cite
topA. Szybiak. Covariant differentiation of geometric objects. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1967. <http://eudml.org/doc/268462>.
@book{A1967,
abstract = {CONTENTSI. Introduction................................................................................................................. 5II. Covariant differentiation in fibre bundles............................................................. 7III. Connection with the Lie derivation....................................................................... 16IV. Connections in the bundles of differential objects........................................... 19V. Definition of the covariant derivative in terms of functional equations........... 23Appendix. Outline of the theory of prolongations.................................................... 291. Invariance equations of geometric object............................................................ 302. Bases of linear forms and structure equations of fibre bundles.................... 313. Prolongations............................................................................................................ 33References.................................................................................................................... 36},
author = {A. Szybiak},
keywords = {differential geometry},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Covariant differentiation of geometric objects},
url = {http://eudml.org/doc/268462},
year = {1967},
}
TY - BOOK
AU - A. Szybiak
TI - Covariant differentiation of geometric objects
PY - 1967
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSI. Introduction................................................................................................................. 5II. Covariant differentiation in fibre bundles............................................................. 7III. Connection with the Lie derivation....................................................................... 16IV. Connections in the bundles of differential objects........................................... 19V. Definition of the covariant derivative in terms of functional equations........... 23Appendix. Outline of the theory of prolongations.................................................... 291. Invariance equations of geometric object............................................................ 302. Bases of linear forms and structure equations of fibre bundles.................... 313. Prolongations............................................................................................................ 33References.................................................................................................................... 36
LA - eng
KW - differential geometry
UR - http://eudml.org/doc/268462
ER -
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.