Some remarks on the equality W ( E , F * ) = K ( E , F * )

Giovanni Emmanuele

Archivum Mathematicum (1998)

  • Volume: 034, Issue: 4, page 417-425
  • ISSN: 0044-8753

Abstract

top
We show that the equality W ( E , F * ) = K ( E , F * ) is a necessary condition for the validity of certain results about isomorphic properties in the projective tensor product E π F of two Banach spaces under some approximation property type assumptions.

How to cite

top

Emmanuele, Giovanni. "Some remarks on the equality $W(E,F^\ast ) = K(E,F^\ast )$." Archivum Mathematicum 034.4 (1998): 417-425. <http://eudml.org/doc/248201>.

@article{Emmanuele1998,
abstract = {We show that the equality $W(E,F^\ast )=K(E,F^\ast )$ is a necessary condition for the validity of certain results about isomorphic properties in the projective tensor product $E \otimes _\pi F$ of two Banach spaces under some approximation property type assumptions.},
author = {Emmanuele, Giovanni},
journal = {Archivum Mathematicum},
keywords = {operator spaces; isomorphic properties; approximation properties; isomorphic properties; approximation properties; spaces of operators; projective tensor product; approximation property},
language = {eng},
number = {4},
pages = {417-425},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Some remarks on the equality $W(E,F^\ast ) = K(E,F^\ast )$},
url = {http://eudml.org/doc/248201},
volume = {034},
year = {1998},
}

TY - JOUR
AU - Emmanuele, Giovanni
TI - Some remarks on the equality $W(E,F^\ast ) = K(E,F^\ast )$
JO - Archivum Mathematicum
PY - 1998
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 034
IS - 4
SP - 417
EP - 425
AB - We show that the equality $W(E,F^\ast )=K(E,F^\ast )$ is a necessary condition for the validity of certain results about isomorphic properties in the projective tensor product $E \otimes _\pi F$ of two Banach spaces under some approximation property type assumptions.
LA - eng
KW - operator spaces; isomorphic properties; approximation properties; isomorphic properties; approximation properties; spaces of operators; projective tensor product; approximation property
UR - http://eudml.org/doc/248201
ER -

References

top
  1. A survey of results related to the Dunford-Pettis property, Contemporary Math. 2, Amer. Math. Soc. 1980. Zbl0571.46013MR0621850
  2. About certain isomorphic properties of Banach spaces in projective tensor products, Extract Math. 5 (1990) 23-25. 
  3. On the Reciprocal Dunford-Pettis property in projective tensor products, Math. Proc. Cambridge Phil. Soc. 109 (1991) 161-166. Zbl0752.46042MR1075128
  4. On Banach spaces with the property (V * ) of Pelczynski, II, Annali Mat. Pura Appl. 160 (1991) 163-170. MR1163206
  5. A remark on the containment of c 0 in spaces of compact operators, Math. Proc. Cambridge Phil. Soc. 111 (1992) 331-335. MR1142753
  6. Banach spaces in which Dunford-Pettis sets are relatively compact, Archiv Math. 58 (1992) 477-485. Zbl0761.46010MR1156580
  7. Property (V) of Pelczynski in projective tensor products, Proc. Royal Irish Acad. 95A,2 (1995) 227-231. MR1660381
  8. Uncomplementability of spaces of compact operators in larger spaces of operators, Czechoslovak Math. J., to appear. MR1435603
  9. On subspaces of spaces with an unconditional basis and spaces of operators, Illinois J. Math. 24 (1980) 196-205. Zbl0411.46009MR0575060
  10. Factoring operators through Banach lattices not containing C ( 0 , 1 ) , Math. Z. 194 (1987) 153-171. MR0876227
  11. Polynomial Grothendieck property, preprint 1994. MR1289296
  12. Applications of ultrapowers to the uniform and Lipschitz classification of Banach spaces, Studia Math. 73 (1982) 215-251. MR0675426
  13. On the uncomplemented subspace K ( X , Y ) , Czechoslovak Math. J. 42 (1992) 167-173. Zbl0776.46016MR1152178
  14. Spaces of compact operators, Math. Annalen 208 (1974) 267-278. Zbl0266.47038MR0341154
  15. Conditional weak compactness in certain inductive tensor products, Math. Annalen 201 (1973) 201-209. Zbl0234.46069MR0326417
  16. Classical Banach spaces, Sequence Spaces, EMG 92, Springer Verlag 1977. MR0500056
  17. Classical Banach spaces, Function Spaces, EMG 97, Springer Verlag 1979. MR0540367
  18. Produits tensoriels projectifs d’espaces de Banach, Colloquium Math. 36 (1976) 255-267. Zbl0356.46058MR0438153
  19. Duality and geometry of spaces of operators, in Functional Analysis: Surveys and Recent Results, III, Math. Studies 90, North Holland 1984. MR0761373
  20. Propriété (u) dans les espaces d’opérateurs, Bull. Acad. Pol. Sci. 36 (1988) 655-659. Zbl0622.46007MR1757565
  21. Subspaces without the approximation property, Israel J. Math. 30 (1978) 123-129. Zbl0384.46008MR0508257
  22. The compact approximation property does not imply the approximation property, Studia Math. 103 (1992) 99-108. Zbl0814.46017MR1184105

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.