On the uncomplemented subspace K ( X , Y )

Kamil John

Czechoslovak Mathematical Journal (1992)

  • Volume: 42, Issue: 1, page 167-173
  • ISSN: 0011-4642

How to cite

top

John, Kamil. "On the uncomplemented subspace $K(X,Y)$." Czechoslovak Mathematical Journal 42.1 (1992): 167-173. <http://eudml.org/doc/31266>.

@article{John1992,
author = {John, Kamil},
journal = {Czechoslovak Mathematical Journal},
keywords = {uncomplemented subspace; spaces of compact operators},
language = {eng},
number = {1},
pages = {167-173},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the uncomplemented subspace $K(X,Y)$},
url = {http://eudml.org/doc/31266},
volume = {42},
year = {1992},
}

TY - JOUR
AU - John, Kamil
TI - On the uncomplemented subspace $K(X,Y)$
JO - Czechoslovak Mathematical Journal
PY - 1992
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 42
IS - 1
SP - 167
EP - 173
LA - eng
KW - uncomplemented subspace; spaces of compact operators
UR - http://eudml.org/doc/31266
ER -

References

top
  1. 10.2140/pjm.1965.15.739, Pacific J. Math. 15 (1965), 739–746. (1965) MR0187052DOI10.2140/pjm.1965.15.739
  2. 10.4064/sm-17-2-151-164, Studia Math. 17 (1958), 151–164. (1958) MR0115069DOI10.4064/sm-17-2-151-164
  3. 10.1002/mana.19790920102, Math. Nachrichten 92 (1979), 7–12. (1979) MR0563569DOI10.1002/mana.19790920102
  4. Sequences and series in Banach spaces, Graduate Texts in Mathematics 92, Springer, 1984. (1984) MR0737004
  5. 10.4064/sm-57-3-209-215, Studia Math. 57 (1976), 209–215. (1976) MR0423116DOI10.4064/sm-57-3-209-215
  6. On the containment of c 0 by spaces of compact operators, Bull. sci. mat. 115 (1991), 177–184. (1991) MR1101022
  7. 10.1215/ijm/1256047715, Illinois J. Math. 24 (1980), 196–205. (1980) Zbl0411.46009MR0575060DOI10.1215/ijm/1256047715
  8. On the space K ( P , P * ) of compact operators on Pisier space P , submitted for publ. 
  9. 10.1016/0022-1236(79)90042-9, J. funct. anal. 32 (1979), 304–311. (1979) Zbl0412.47024MR0538857DOI10.1016/0022-1236(79)90042-9
  10. Exhaustive operators and vector measures, Proc. Edinburgh, Math. Soc. 19 (1974), 291–300. (1974) MR0388099
  11. 10.1007/BF01432152, Math. Ann. 208 (1974), 267–278. (1974) Zbl0266.47038MR0341154DOI10.1007/BF01432152
  12. Lucid operators on Banach spaces, Comment. Math. Univ. Carolinae 31 (1990), 489–499. (1990) MR1078483
  13. 10.2140/pjm.1974.52.475, Pacific J. Math. 52 (1974), 475–480. (1974) MR0352939DOI10.2140/pjm.1974.52.475
  14. 10.1007/BF02393206, Acta Math. 151 (1983), 180–208. (1983) Zbl0542.46038MR0723009DOI10.1007/BF02393206
  15. 10.4064/sm-37-1-13-36, Studia Math. 37 (1970), 13–36. (1970) Zbl0227.46027MR0270122DOI10.4064/sm-37-1-13-36
  16. Duality and geometry of spaces of compact operators., Functional Analysis: Surveys and Recent Results III, North Holland, Amsterdam, 1984 (Mathematics Studies, 90), pp. 59–78. (1984 (Mathematics Studies, 90)) MR0761373
  17. 10.2140/pjm.1960.10.693, Pacific J. Math. 10 (1960), 693–696. (1960) MR0114128DOI10.2140/pjm.1960.10.693
  18. 10.1007/BF02771732, Israel J. Math. 10 (1971), 451–456. (1971) MR0296663DOI10.1007/BF02771732
  19. 10.4064/sm-37-3-227-236, Studia Math. 37 (1971), 227–236. (1971) MR0300058DOI10.4064/sm-37-3-227-236
  20. Weak compactness of multiplication operators on spaces of bounded linear operators, (preprint). Zbl0760.47019

Citations in EuDML Documents

top
  1. Giovanni Emmanuele, Kamil John, The space of compact operators contains c 0 when a noncompact operator is suitably factorized
  2. Kamil John, Projections from L ( X , Y ) onto K ( X , Y )
  3. Ioana Ghenciu, A note on Dunford-Pettis like properties and complemented spaces of operators
  4. Giovanni Emmanuele, Some remarks on the equality W ( E , F * ) = K ( E , F * )
  5. Giovanni Emmanuele, Kamil John, Uncomplementability of spaces of compact operators in larger spaces of operators
  6. Giovanni Emmanuele, On the position of the space of representable operators in the space of linear operators 1
  7. J. Bonet, Paweł Domański, M. Lindström, Cotype and complemented copies of c 0 in spaces of operators

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.