Behaviour of solutions of linear differential equations with delay

Josef Diblík

Archivum Mathematicum (1998)

  • Volume: 034, Issue: 1, page 31-47
  • ISSN: 0044-8753

Abstract

top
This contribution is devoted to the problem of asymptotic behaviour of solutions of scalar linear differential equation with variable bounded delay of the form x ˙ ( t ) = - c ( t ) x ( t - τ ( t ) ) ( * ) with positive function c ( t ) . Results concerning the structure of its solutions are obtained with the aid of properties of solutions of auxiliary homogeneous equation y ˙ ( t ) = β ( t ) [ y ( t ) - y ( t - τ ( t ) ) ] where the function β ( t ) is positive. A result concerning the behaviour of solutions of Eq. (*) in critical case is given and, moreover, an analogy with behaviour of solutions of the second order ordinary differential equation x ' ' ( t ) + a ( t ) x ( t ) = 0 for positive function a ( t ) in critical case is considered.

How to cite

top

Diblík, Josef. "Behaviour of solutions of linear differential equations with delay." Archivum Mathematicum 034.1 (1998): 31-47. <http://eudml.org/doc/248217>.

@article{Diblík1998,
abstract = {This contribution is devoted to the problem of asymptotic behaviour of solutions of scalar linear differential equation with variable bounded delay of the form \[ \dot\{x\}(t)= -c(t)x(t-\tau (t)) \qquad \mathrm \{\{(^*)\}\}\] with positive function $c(t).$ Results concerning the structure of its solutions are obtained with the aid of properties of solutions of auxiliary homogeneous equation \[ \dot\{y\}(t)=\beta (t)[y(t)-y(t-\tau (t))] \] where the function $\beta (t)$ is positive. A result concerning the behaviour of solutions of Eq. (*) in critical case is given and, moreover, an analogy with behaviour of solutions of the second order ordinary differential equation \[ x^\{\prime \prime \}(t)+a(t)x(t)=0 \] for positive function $a(t)$ in critical case is considered.},
author = {Diblík, Josef},
journal = {Archivum Mathematicum},
keywords = {Positive solution; oscillating solution; convergent solution; linear differential equation with delay; topological principle of Ważewski (Rybakowski’s approach); positive solutions; oscillating solutions; convergent solutions; linear differential equations with delay; topological principle of Wazewski (Rybakowski's approach)},
language = {eng},
number = {1},
pages = {31-47},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Behaviour of solutions of linear differential equations with delay},
url = {http://eudml.org/doc/248217},
volume = {034},
year = {1998},
}

TY - JOUR
AU - Diblík, Josef
TI - Behaviour of solutions of linear differential equations with delay
JO - Archivum Mathematicum
PY - 1998
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 034
IS - 1
SP - 31
EP - 47
AB - This contribution is devoted to the problem of asymptotic behaviour of solutions of scalar linear differential equation with variable bounded delay of the form \[ \dot{x}(t)= -c(t)x(t-\tau (t)) \qquad \mathrm {{(^*)}}\] with positive function $c(t).$ Results concerning the structure of its solutions are obtained with the aid of properties of solutions of auxiliary homogeneous equation \[ \dot{y}(t)=\beta (t)[y(t)-y(t-\tau (t))] \] where the function $\beta (t)$ is positive. A result concerning the behaviour of solutions of Eq. (*) in critical case is given and, moreover, an analogy with behaviour of solutions of the second order ordinary differential equation \[ x^{\prime \prime }(t)+a(t)x(t)=0 \] for positive function $a(t)$ in critical case is considered.
LA - eng
KW - Positive solution; oscillating solution; convergent solution; linear differential equation with delay; topological principle of Ważewski (Rybakowski’s approach); positive solutions; oscillating solutions; convergent solutions; linear differential equations with delay; topological principle of Wazewski (Rybakowski's approach)
UR - http://eudml.org/doc/248217
ER -

References

top
  1. O. Arino M. Pituk, Convergence in asymptotically autonomous functional differential equations, University of Veszprém, Department of Mathematics and Computing, preprint No. 065 (1997). (1997) MR1708180
  2. F. V. Atkinson J. R. Haddock, Criteria for asymptotic constancy of solutions of functional differential equations, J. Math. Anal. Appl. 91 (1983), 410-423. (1983) MR0690880
  3. Li Bingtuan, Oscillation of first order delay differential equations, Proc. Amer. Math. Soc. 124 (1996), 3729-3737. (1996) Zbl0865.34057MR1363175
  4. Li Bingtuan, Oscillations of delay differential equations with variable coefficients, J. Math. Anal. Appl. 192 (1995), 312-321. (192) MR1329426
  5. J. Čermák, On the asymptotic behaviour of solutions of certain functional differential equations, to appear in Math. Slovaca. 
  6. J. Diblík, A criterion for convergence of solutions of homogeneous delay linear differential equations, submitted. 
  7. J. Diblík, A criterion for existence of positive solutions of systems of retarded functional differential equations, to appear in Nonlin. Anal., T. M. A. MR1705781
  8. J. Diblík, Asymptotic representation of solutions of equation y ˙ ( t ) = β ( t ) [ y ( t ) - y ( t - τ ( t ) ) ] , , J. Math. Anal. Appl., 217 (1998), 200–215. (1998) MR1492085
  9. J. Diblík, Existence of solutions with prescribed asymptotic for certain systems retarded functional differential equations, Siberian Mathematical Journal, 32 (1991), (No 2), 222–226. (1991) MR1138440
  10. J. Diblík, Existence of decreasing positive solutions of a system of linear differential equations with delay, Proceedings of the Fifth International Colloquium on Differential Equations, VSP, Eds.: D. Bainov and V. Covachov, 83–94, 1995. (1995) MR1458348
  11. J. Diblík, Positive and oscillating solutions of differential equations with delay in critical case, J. Comput. Appl. Math., 88 (1998), 185–202. (1998) MR1609086
  12. A. Domoshnitsky M. Drakhlin, Nonoscillation of first order differential equations with delay, J. Math. Anal. Appl., 206 (1997), 254–269. (1997) MR1429290
  13. Y. Domshlak, Sturmian Comparison Method in Investigation of the Behavior of Solutions for Differential-Operator Equations, ELM, Baku, USSR, 1986. (In Russian) (1986) MR0869589
  14. Y. Domshlak I. P. Stavroulakis, Oscillation of first-order delay differential equations in a critical case, Applicable Analysis, 61 (1996), 359–371. (1996) MR1618248
  15. Á. Elbert I. P. Stavroulakis, Oscillation and non-oscillation criteria for delay differential equations, Proc. Amer. Math. Soc., 123 (1995), 1503–1510. (1995) MR1242082
  16. L. H. Erbe Q. Kong B. G. Zhang, Oscillation Theory for Functional Differential Equations, Marcel Dekker, Inc., 1995. (1995) MR1309905
  17. K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics, Kluwer Academic Publishers, 1992. (1992) Zbl0752.34039MR1163190
  18. I. Györi G. Ladas, Oscillation Theory of Delay Differential Equations, Clarendon Press, 1991. (1991) MR1168471
  19. I. Györi M. Pituk, Comparison theorems and asymptotic equilibrium for delay differential and difference equations, Dynamic Systems and Application, 5 (1996), 277–302. (1996) MR1396192
  20. J. K. Hale S. M. V. Lunel, Introduction to Functional Differential Equations, Springer-Verlag, 1993. (1993) MR1243878
  21. P. Hartman, Ordinary Differential Equations, John Wiley & Sons, 1964. (1964) Zbl0125.32102MR0171038
  22. E. Hille, Non-oscillation theorems, Trans. Amer. Math. Soc., 64 (1948), 232–252. (1948) Zbl0031.35402MR0027925
  23. J. Jaroš I. P. Stavroulakis, Oscillation tests for delay equations, Technical Report No 265, University of Ioannina, Department of Mathematics, June 1996. (1996) 
  24. A. Kneser, Untersuchungen über die reelen Nullstellen der Integrale linearen Differentialgleichungen, Math. Ann., 42 (1893), 409–503; J. Reine Angew. Math., 116 (1896), 178–212. MR1510784
  25. R. G. Koplatadze T. A. Chanturija, On the oscillatory and monotonic solutions of first order differential equations with deviating arguments, Differencial’nyje Uravnenija, 18 (1982), 1463–1465. (In Russian) (1982) MR1034096
  26. E. Kozakiewicz, Conditions for the absence of positive solutions of a first order differential inequality with a single delay, Archivum Mathematicum (Brno), 31 (1995), 291–297. (1995) Zbl0849.34054MR1390588
  27. E. Kozakiewicz, Conditions for the absence of positive solutions of a first order differential inequality with one continuously retarded argument, Berlin, preprint, (1997), 1–6. (1997) MR1669773
  28. E. Kozakiewicz, Über das asymptotische Verhalten der nichtschwingenden Lösungen einer linearen Differentialgleichung mit nacheilendem Argument, Wiss. Z. Humboldt Univ. Berlin, Math. Nat. R., 13:4 (1964), 577–589. (1964) Zbl0277.34085
  29. E. Kozakiewicz, Zur Abschätzung des Abklingens der nichtschwingenden Lösungen einer linearen Differentialgleichung mit nacheilendem Argument, Wiss. Z. Humboldt Univ. Berlin, Math. Nat. R., 15:5 (1966), 675–676. (1966) Zbl0221.34025MR0216262
  30. E. Kozakiewicz, Über die nichtschwingenden Lösungen einer linearen Differentialgleichung mit nacheilendem Argument, Math. Nachr., 32: 1/2 (1966), 107–113. (1966) Zbl0182.15504MR0204801
  31. T. Krisztin, A note on the convergence of the solutions of a linear functional differential equation, J. Math. Anal. Appl., 145 (1990), 17–25, (1990). (1990) Zbl0693.45012MR1031171
  32. A. D. Myshkis, Linear Differential Equations with Retarded Arguments, (2nd Ed.), Nauka, 1972. [In Russian] (1972) MR0352648
  33. F. Neuman, On equivalence of linear functional-differential equations, Results in Mathematics, 26 (1994), 354–359. (1994) Zbl0829.34054MR1300618
  34. F. Neuman, On transformations of differential equations and systems with deviating argument, Czechoslovak Mathematical Journal, 31 (106) (1981), 87–90. (1981) Zbl0463.34051MR0604115
  35. M. Pituk, Asymptotic characterization of solutions of functional differential equations, Bolletino U. M. I., 7, 7-B, (1993), 653–683. (1993) Zbl0809.34087MR1244413
  36. K. P. Rybakowski, Ważewski’s principle for retarded functional differential equations, Journal of Differential Equations, 36 (1980), 117–138. (1980) Zbl0407.34056MR0571132
  37. C. A. Swanson, Comparison and Oscillating Theory of Linear Differential Equations, Academic Press, 1968. (1968) MR0463570
  38. T. Ważewski, Sur un principle topologique de l’examen de l’allure asymptotique des intégrales des équations différentielles, Ann. Soc. Polon. Math., 20 (1947), 279–313. (1947) MR0026206
  39. J. Werbowski, Oscillations of first order linear differential equations with delay, Proceedings of the Conference on Ordinary Differential Equations, Poprad (Slovak Republic), 87–94, 1996. (1996) Zbl0911.34062
  40. Yu Jiang, Yan Jurang, Positive solutions and asymptotic behavior of delay differential equations with nonlinear impulses, J. Math. Anal. Appl., 207 (1997), 388–396. (1997) Zbl0877.34054MR1438921
  41. S. N. Zhang, Asymptotic behaviour and structure of solutions for equation x ˙ ( t ) = p ( t ) [ x ( t ) - x ( t - 1 ) ] , , J. Anhui University (Natural Science Edition), 2 (1981), 11–21. (In Chinese) (1981) 
  42. D. Zhou, On a problem of I. Györi, J. Math. Anal. Appl., 183 (1994), 620–623. (1994) Zbl0803.34070MR1274862

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.