Stepanoff's theorem in separable Banach spaces

Donatella Bongiorno

Commentationes Mathematicae Universitatis Carolinae (1998)

  • Volume: 39, Issue: 2, page 323-335
  • ISSN: 0010-2628

Abstract

top
Stepanoff's theorem is extended to infinitely dimensional separable Banach spaces.

How to cite

top

Bongiorno, Donatella. "Stepanoff's theorem in separable Banach spaces." Commentationes Mathematicae Universitatis Carolinae 39.2 (1998): 323-335. <http://eudml.org/doc/248226>.

@article{Bongiorno1998,
abstract = {Stepanoff's theorem is extended to infinitely dimensional separable Banach spaces.},
author = {Bongiorno, Donatella},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Gateaux differentiable functions; Lipschitz functions at a point; Radon-Nikodym property; Gateaux differentiable; Lipschitz at a point; Radon-Nikodým property; exceptional set in the sense of Aronszajn},
language = {eng},
number = {2},
pages = {323-335},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Stepanoff's theorem in separable Banach spaces},
url = {http://eudml.org/doc/248226},
volume = {39},
year = {1998},
}

TY - JOUR
AU - Bongiorno, Donatella
TI - Stepanoff's theorem in separable Banach spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1998
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 39
IS - 2
SP - 323
EP - 335
AB - Stepanoff's theorem is extended to infinitely dimensional separable Banach spaces.
LA - eng
KW - Gateaux differentiable functions; Lipschitz functions at a point; Radon-Nikodym property; Gateaux differentiable; Lipschitz at a point; Radon-Nikodým property; exceptional set in the sense of Aronszajn
UR - http://eudml.org/doc/248226
ER -

References

top
  1. Aronszajn N., Differentiability of Lipschitzian mappings between Banach spaces, Studia Math. 57 (1976), 147-190. (1976) Zbl0342.46034MR0425608
  2. Christensen J.P.R., Measure theoretic zero sets in infinite dimensional spaces and applications to differentiability of Lipschitz mappings, 2-ieme Coll. Anal. Fonct. (1973, Bordeaux), Publ. du Dept. Math. Lyon 10-2 (1973), 29-39. Zbl0302.43001MR0361770
  3. Diestel J., Uhl J.J., Jr., Vector Measures, AMS, Math. Surveys, 15, Providence, 1977. Zbl0521.46035MR0453964
  4. Federer H., Geometric Measure Theory, Springer-Verlag, Berlin, 1969. Zbl0874.49001MR0257325
  5. Mankiewicz P., On the differentiability of Lipschitz mappings in Fréchet spaces, Studia Math. 45 (1973), 15-29. (1973) Zbl0219.46006MR0331055
  6. Phelps R., Gaussian null sets and differentiability of Lipschitz map on Banach spaces, Pacific J. Math. 77 (1978), 523-531. (1978) Zbl0396.46041MR0510938
  7. Rademacher H., Über partielle und totale Differenzierbarkeit I, Math. Ann. 79 (1919), 254-269. (1919) 
  8. Stepanoff W., Über totale Differenzierbarkeit, Math. Ann. 90 (1923), 318-320. (1923) MR1512177
  9. Stepanoff W., Sur les conditions de l'existence de la differentielle totale, Rec. Math. Soc. Math. Moscou 32 (1925), 511-526. (1925) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.