Remarks on Fréchet differentiability of pointwise Lipschitz, cone-monotone and quasiconvex functions
Commentationes Mathematicae Universitatis Carolinae (2014)
- Volume: 55, Issue: 2, page 203-213
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topZajíček, Luděk. "Remarks on Fréchet differentiability of pointwise Lipschitz, cone-monotone and quasiconvex functions." Commentationes Mathematicae Universitatis Carolinae 55.2 (2014): 203-213. <http://eudml.org/doc/261857>.
@article{Zajíček2014,
abstract = {We present some consequences of a deep result of J. Lindenstrauss and D. Preiss on $\Gamma $-almost everywhere Fréchet differentiability of Lipschitz functions on $c_0$ (and similar Banach spaces). For example, in these spaces, every continuous real function is Fréchet differentiable at $\Gamma $-almost every $x$ at which it is Gâteaux differentiable. Another interesting consequences say that both cone-monotone functions and continuous quasiconvex functions on these spaces are $\Gamma $-almost everywhere Fréchet differentiable. In the proofs we use a general observation that each version of the Rademacher theorem for real functions on Banach spaces (i.e., a result on a.e. Fréchet or Gâteaux differentiability of Lipschitz functions) easily implies by a method of J. Malý a corresponding version of the Stepanov theorem (on a.e. differentiability of pointwise Lipschitz functions). Using the method of separable reduction, we extend some results to several non-separable spaces.},
author = {Zajíček, Luděk},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {cone-monotone function; Fréchet differentiability; Gâteaux differentiability; pointwise Lipschitz function; $\Gamma $-null set; quasiconvex function; separable reduction; cone-monotone function; Fréchet differentiability; Gâteaux differentiability; pointwise Lipschitz function; -null set; quasiconvex function; separable reduction},
language = {eng},
number = {2},
pages = {203-213},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Remarks on Fréchet differentiability of pointwise Lipschitz, cone-monotone and quasiconvex functions},
url = {http://eudml.org/doc/261857},
volume = {55},
year = {2014},
}
TY - JOUR
AU - Zajíček, Luděk
TI - Remarks on Fréchet differentiability of pointwise Lipschitz, cone-monotone and quasiconvex functions
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2014
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 55
IS - 2
SP - 203
EP - 213
AB - We present some consequences of a deep result of J. Lindenstrauss and D. Preiss on $\Gamma $-almost everywhere Fréchet differentiability of Lipschitz functions on $c_0$ (and similar Banach spaces). For example, in these spaces, every continuous real function is Fréchet differentiable at $\Gamma $-almost every $x$ at which it is Gâteaux differentiable. Another interesting consequences say that both cone-monotone functions and continuous quasiconvex functions on these spaces are $\Gamma $-almost everywhere Fréchet differentiable. In the proofs we use a general observation that each version of the Rademacher theorem for real functions on Banach spaces (i.e., a result on a.e. Fréchet or Gâteaux differentiability of Lipschitz functions) easily implies by a method of J. Malý a corresponding version of the Stepanov theorem (on a.e. differentiability of pointwise Lipschitz functions). Using the method of separable reduction, we extend some results to several non-separable spaces.
LA - eng
KW - cone-monotone function; Fréchet differentiability; Gâteaux differentiability; pointwise Lipschitz function; $\Gamma $-null set; quasiconvex function; separable reduction; cone-monotone function; Fréchet differentiability; Gâteaux differentiability; pointwise Lipschitz function; -null set; quasiconvex function; separable reduction
UR - http://eudml.org/doc/261857
ER -
References
top- Benyamini Y., Lindenstrauss J., Geometric Nonlinear Functional Analysis, Vol. 1, Colloquium Publications, 48, American Mathematical Society, Providence, 2000. MR1727673
- Bongiorno D., Stepanoff's theorem in separable Banach spaces, Comment. Math. Univ. Carolin. 39 (1998), 323–335. Zbl0937.46038MR1651959
- Bongiorno D., Radon-Nikodým property of the range of Lipschitz extensions, Atti Sem. Mat. Fis. Univ. Modena 48 (2000), 517–525. MR1811552
- Borwein J.M., Wang X., 10.4153/CJM-2005-037-5, Canad. J. Math. 57 (2005), 961–982. Zbl1095.49015MR2164591DOI10.4153/CJM-2005-037-5
- Conway J.B., A course in functional analysis, 2nd ed., Graduate Texts in Mathematics, 96, Springer, New York, 1990. Zbl0706.46003MR1070713
- Crouzeix J.-P., 10.1007/0-387-23393-8_3, Handbook of generalized convexity and generalized monotonicity, pp. 121–149, Nonconvex Optim. Appl. 76, Springer, New York, 2005. Zbl1077.49015MR2098899DOI10.1007/0-387-23393-8_3
- Cúth M., 10.4064/fm219-3-1, Fund. Math. 219 (2012), 191–222. Zbl1270.46015MR3001239DOI10.4064/fm219-3-1
- Duda J., 10.4171/ZAA/1328, Z. Anal. Anwend. 26 (2007), 341–362. Zbl1143.26006MR2322838DOI10.4171/ZAA/1328
- Duda J., 10.4153/CMB-2008-022-6, Canad. Math. Bull. 51 (2008), 205–216. Zbl1152.46030MR2414208DOI10.4153/CMB-2008-022-6
- Duda J., 10.1016/j.na.2007.01.023, Nonlinear Anal. 68 (2008), 1963–1972. Zbl1135.46046MR2388756DOI10.1016/j.na.2007.01.023
- Engelking R., General Topology, 2nd ed., Sigma Series in Pure Mathematics, 6, Heldermann Verlag, Berlin, 1989. Zbl0684.54001MR1039321
- Fabian M., Habala P., Hájek P., Montesinos Santalucía V., Pelant J., Zizler V., Functional analysis and infinite-dimensional geometry, CMS Books in Mathematics, 8, Springer, New York, 2001. Zbl0981.46001MR1831176
- Górak R., 10.4064/ba58-3-8, Bull. Pol. Acad. Sci. Math. 58 (2010), 259–268. Zbl1214.46025MR2771575DOI10.4064/ba58-3-8
- Lindenstrauss J., Preiss D., 10.4007/annals.2003.157.257, Ann. of Math. 157 (2003), 257–288. Zbl1171.46313MR1954267DOI10.4007/annals.2003.157.257
- Lindenstrauss J., Preiss D., Tišer J., Fréchet Differentiability of Lipschitz Maps and Porous Sets in Banach Spaces, Princeton University Press, Princeton, 2012. Zbl1139.46036MR2884141
- Malý J., A simple proof of the Stepanov theorem on differentiability almost everywhere, Exposition. Math. 17 (1999), 59–61. Zbl0930.26005MR1687460
- Malý J., Zajíček L., On Stepanov type differentiability theorems, submitted.
- McShane E.J., 10.1090/S0002-9904-1934-05978-0, Bull. Amer. Math. Soc. 40 (1934), 837–842. Zbl0010.34606MR1562984DOI10.1090/S0002-9904-1934-05978-0
- Preiss D., 10.1016/0022-1236(90)90147-D, J. Funct. Anal. 91 (1990), 312–345. Zbl0872.46026MR1058975DOI10.1016/0022-1236(90)90147-D
- Preiss D., Zajíček L., Fréchet differentiation of convex functions in a Banach space with a separable dual, Proc. Amer. Math. Soc. 91 (1984), 202–204. Zbl0521.46034MR0740171
- Preiss D., Zajíček L., 10.1007/BF02773371, Israel J. Math. 125 (2001), 1–27. MR1853802DOI10.1007/BF02773371
- Rabier P.J., Differentiability of quasiconvex functions on separable Banach spaces, preprint, 2013, arXiv:1301.2852v2. MR3136598
- Zajíček L., Fréchet differentiability, strict differentiability and subdifferentiability, Czechoslovak Math. J. 41 (1991), 471–489. Zbl0760.46038MR1117801
- Zajíček L., 10.1155/AAA.2005.509, Abstr. Appl. Anal. 2005 (2005), 509–534. Zbl1098.28003MR2201041DOI10.1155/AAA.2005.509
- Zajíček L., On sets of non-differentiability of Lipschitz and convex functions, Math. Bohem. 132 (2007), 75–85. Zbl1171.46314MR2311755
- Zajíček L., Hadamard differentiability via Gâteaux differentiability, Proc. Amer. Math. Soc.(to appear).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.