Remarks on Fréchet differentiability of pointwise Lipschitz, cone-monotone and quasiconvex functions

Luděk Zajíček

Commentationes Mathematicae Universitatis Carolinae (2014)

  • Volume: 55, Issue: 2, page 203-213
  • ISSN: 0010-2628

Abstract

top
We present some consequences of a deep result of J. Lindenstrauss and D. Preiss on Γ -almost everywhere Fréchet differentiability of Lipschitz functions on c 0 (and similar Banach spaces). For example, in these spaces, every continuous real function is Fréchet differentiable at Γ -almost every x at which it is Gâteaux differentiable. Another interesting consequences say that both cone-monotone functions and continuous quasiconvex functions on these spaces are Γ -almost everywhere Fréchet differentiable. In the proofs we use a general observation that each version of the Rademacher theorem for real functions on Banach spaces (i.e., a result on a.e. Fréchet or Gâteaux differentiability of Lipschitz functions) easily implies by a method of J. Malý a corresponding version of the Stepanov theorem (on a.e. differentiability of pointwise Lipschitz functions). Using the method of separable reduction, we extend some results to several non-separable spaces.

How to cite

top

Zajíček, Luděk. "Remarks on Fréchet differentiability of pointwise Lipschitz, cone-monotone and quasiconvex functions." Commentationes Mathematicae Universitatis Carolinae 55.2 (2014): 203-213. <http://eudml.org/doc/261857>.

@article{Zajíček2014,
abstract = {We present some consequences of a deep result of J. Lindenstrauss and D. Preiss on $\Gamma $-almost everywhere Fréchet differentiability of Lipschitz functions on $c_0$ (and similar Banach spaces). For example, in these spaces, every continuous real function is Fréchet differentiable at $\Gamma $-almost every $x$ at which it is Gâteaux differentiable. Another interesting consequences say that both cone-monotone functions and continuous quasiconvex functions on these spaces are $\Gamma $-almost everywhere Fréchet differentiable. In the proofs we use a general observation that each version of the Rademacher theorem for real functions on Banach spaces (i.e., a result on a.e. Fréchet or Gâteaux differentiability of Lipschitz functions) easily implies by a method of J. Malý a corresponding version of the Stepanov theorem (on a.e. differentiability of pointwise Lipschitz functions). Using the method of separable reduction, we extend some results to several non-separable spaces.},
author = {Zajíček, Luděk},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {cone-monotone function; Fréchet differentiability; Gâteaux differentiability; pointwise Lipschitz function; $\Gamma $-null set; quasiconvex function; separable reduction; cone-monotone function; Fréchet differentiability; Gâteaux differentiability; pointwise Lipschitz function; -null set; quasiconvex function; separable reduction},
language = {eng},
number = {2},
pages = {203-213},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Remarks on Fréchet differentiability of pointwise Lipschitz, cone-monotone and quasiconvex functions},
url = {http://eudml.org/doc/261857},
volume = {55},
year = {2014},
}

TY - JOUR
AU - Zajíček, Luděk
TI - Remarks on Fréchet differentiability of pointwise Lipschitz, cone-monotone and quasiconvex functions
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2014
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 55
IS - 2
SP - 203
EP - 213
AB - We present some consequences of a deep result of J. Lindenstrauss and D. Preiss on $\Gamma $-almost everywhere Fréchet differentiability of Lipschitz functions on $c_0$ (and similar Banach spaces). For example, in these spaces, every continuous real function is Fréchet differentiable at $\Gamma $-almost every $x$ at which it is Gâteaux differentiable. Another interesting consequences say that both cone-monotone functions and continuous quasiconvex functions on these spaces are $\Gamma $-almost everywhere Fréchet differentiable. In the proofs we use a general observation that each version of the Rademacher theorem for real functions on Banach spaces (i.e., a result on a.e. Fréchet or Gâteaux differentiability of Lipschitz functions) easily implies by a method of J. Malý a corresponding version of the Stepanov theorem (on a.e. differentiability of pointwise Lipschitz functions). Using the method of separable reduction, we extend some results to several non-separable spaces.
LA - eng
KW - cone-monotone function; Fréchet differentiability; Gâteaux differentiability; pointwise Lipschitz function; $\Gamma $-null set; quasiconvex function; separable reduction; cone-monotone function; Fréchet differentiability; Gâteaux differentiability; pointwise Lipschitz function; -null set; quasiconvex function; separable reduction
UR - http://eudml.org/doc/261857
ER -

References

top
  1. Benyamini Y., Lindenstrauss J., Geometric Nonlinear Functional Analysis, Vol. 1, Colloquium Publications, 48, American Mathematical Society, Providence, 2000. MR1727673
  2. Bongiorno D., Stepanoff's theorem in separable Banach spaces, Comment. Math. Univ. Carolin. 39 (1998), 323–335. Zbl0937.46038MR1651959
  3. Bongiorno D., Radon-Nikodým property of the range of Lipschitz extensions, Atti Sem. Mat. Fis. Univ. Modena 48 (2000), 517–525. MR1811552
  4. Borwein J.M., Wang X., 10.4153/CJM-2005-037-5, Canad. J. Math. 57 (2005), 961–982. Zbl1095.49015MR2164591DOI10.4153/CJM-2005-037-5
  5. Conway J.B., A course in functional analysis, 2nd ed., Graduate Texts in Mathematics, 96, Springer, New York, 1990. Zbl0706.46003MR1070713
  6. Crouzeix J.-P., 10.1007/0-387-23393-8_3, Handbook of generalized convexity and generalized monotonicity, pp. 121–149, Nonconvex Optim. Appl. 76, Springer, New York, 2005. Zbl1077.49015MR2098899DOI10.1007/0-387-23393-8_3
  7. Cúth M., 10.4064/fm219-3-1, Fund. Math. 219 (2012), 191–222. Zbl1270.46015MR3001239DOI10.4064/fm219-3-1
  8. Duda J., 10.4171/ZAA/1328, Z. Anal. Anwend. 26 (2007), 341–362. Zbl1143.26006MR2322838DOI10.4171/ZAA/1328
  9. Duda J., 10.4153/CMB-2008-022-6, Canad. Math. Bull. 51 (2008), 205–216. Zbl1152.46030MR2414208DOI10.4153/CMB-2008-022-6
  10. Duda J., 10.1016/j.na.2007.01.023, Nonlinear Anal. 68 (2008), 1963–1972. Zbl1135.46046MR2388756DOI10.1016/j.na.2007.01.023
  11. Engelking R., General Topology, 2nd ed., Sigma Series in Pure Mathematics, 6, Heldermann Verlag, Berlin, 1989. Zbl0684.54001MR1039321
  12. Fabian M., Habala P., Hájek P., Montesinos Santalucía V., Pelant J., Zizler V., Functional analysis and infinite-dimensional geometry, CMS Books in Mathematics, 8, Springer, New York, 2001. Zbl0981.46001MR1831176
  13. Górak R., 10.4064/ba58-3-8, Bull. Pol. Acad. Sci. Math. 58 (2010), 259–268. Zbl1214.46025MR2771575DOI10.4064/ba58-3-8
  14. Lindenstrauss J., Preiss D., 10.4007/annals.2003.157.257, Ann. of Math. 157 (2003), 257–288. Zbl1171.46313MR1954267DOI10.4007/annals.2003.157.257
  15. Lindenstrauss J., Preiss D., Tišer J., Fréchet Differentiability of Lipschitz Maps and Porous Sets in Banach Spaces, Princeton University Press, Princeton, 2012. Zbl1139.46036MR2884141
  16. Malý J., A simple proof of the Stepanov theorem on differentiability almost everywhere, Exposition. Math. 17 (1999), 59–61. Zbl0930.26005MR1687460
  17. Malý J., Zajíček L., On Stepanov type differentiability theorems, submitted. 
  18. McShane E.J., 10.1090/S0002-9904-1934-05978-0, Bull. Amer. Math. Soc. 40 (1934), 837–842. Zbl0010.34606MR1562984DOI10.1090/S0002-9904-1934-05978-0
  19. Preiss D., 10.1016/0022-1236(90)90147-D, J. Funct. Anal. 91 (1990), 312–345. Zbl0872.46026MR1058975DOI10.1016/0022-1236(90)90147-D
  20. Preiss D., Zajíček L., Fréchet differentiation of convex functions in a Banach space with a separable dual, Proc. Amer. Math. Soc. 91 (1984), 202–204. Zbl0521.46034MR0740171
  21. Preiss D., Zajíček L., 10.1007/BF02773371, Israel J. Math. 125 (2001), 1–27. MR1853802DOI10.1007/BF02773371
  22. Rabier P.J., Differentiability of quasiconvex functions on separable Banach spaces, preprint, 2013, arXiv:1301.2852v2. MR3136598
  23. Zajíček L., Fréchet differentiability, strict differentiability and subdifferentiability, Czechoslovak Math. J. 41 (1991), 471–489. Zbl0760.46038MR1117801
  24. Zajíček L., 10.1155/AAA.2005.509, Abstr. Appl. Anal. 2005 (2005), 509–534. Zbl1098.28003MR2201041DOI10.1155/AAA.2005.509
  25. Zajíček L., On sets of non-differentiability of Lipschitz and convex functions, Math. Bohem. 132 (2007), 75–85. Zbl1171.46314MR2311755
  26. Zajíček L., Hadamard differentiability via Gâteaux differentiability, Proc. Amer. Math. Soc.(to appear). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.