Weakly uniformly rotund Banach spaces

Aníbal Moltó; Vicente Montesinos; José Orihuela; Stanimir L. Troyanski

Commentationes Mathematicae Universitatis Carolinae (1998)

  • Volume: 39, Issue: 4, page 749-753
  • ISSN: 0010-2628

Abstract

top
The dual space of a WUR Banach space is weakly K-analytic.

How to cite

top

Moltó, Aníbal, et al. "Weakly uniformly rotund Banach spaces." Commentationes Mathematicae Universitatis Carolinae 39.4 (1998): 749-753. <http://eudml.org/doc/248230>.

@article{Moltó1998,
abstract = {The dual space of a WUR Banach space is weakly K-analytic.},
author = {Moltó, Aníbal, Montesinos, Vicente, Orihuela, José, Troyanski, Stanimir L.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Banach spaces; weak uniform rotundity; K-analiticity; uniform Gâteaux differentiability; Banach spaces; weak uniform rotundity; K-analyticity; uniform Gâteaux differentiability},
language = {eng},
number = {4},
pages = {749-753},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Weakly uniformly rotund Banach spaces},
url = {http://eudml.org/doc/248230},
volume = {39},
year = {1998},
}

TY - JOUR
AU - Moltó, Aníbal
AU - Montesinos, Vicente
AU - Orihuela, José
AU - Troyanski, Stanimir L.
TI - Weakly uniformly rotund Banach spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1998
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 39
IS - 4
SP - 749
EP - 753
AB - The dual space of a WUR Banach space is weakly K-analytic.
LA - eng
KW - Banach spaces; weak uniform rotundity; K-analiticity; uniform Gâteaux differentiability; Banach spaces; weak uniform rotundity; K-analyticity; uniform Gâteaux differentiability
UR - http://eudml.org/doc/248230
ER -

References

top
  1. Cascales B., On K-analytic locally convex spaces, Arch. Math. 49 (1987), 232-244. (1987) Zbl0617.46014MR0906738
  2. Cascales B., Orihuela J., A sequential property of set-valued maps, J. Math. Anal. Appl. 156 (1991), 86-100. (1991) Zbl0760.54013MR1102599
  3. Deville R., Godefroy G., Zizler V., Smoothness and Renormings in Banach Spaces, Longman Scientific and Technical, 1993. Zbl0782.46019MR1211634
  4. Fabian M., Godefroy G., The dual of every Asplund admits a projectional resolution of the identity, Studia Math. 91 (1988), 141-151. (1988) MR0985081
  5. Fabian M., Hájek P., Zizler V., On uniform Eberlein compacta and uniformly Gâteaux smooth norms, Serdica Math. J. 23 (1997), 1001-1010. (1997) MR1660997
  6. Fabian M., Troyanski S., A Banach space admits a locally uniformly rotund norm if its dual is a Vasšák space, Israel J. Math. 69 (1990), 214-224. (1990) MR1045374
  7. Godefroy G., Troyanski S., Whitfield J.H.M., Zizler V., Smoothness in weakly compactly generated Banach spaces, J. Functional Anal. 52 (1983), 344-352. (1983) Zbl0517.46010MR0712585
  8. Hájek P., Dual renormings of Banach spaces, Comment. Math. Univ. Carolinae 37 (1996), 241-253. (1996) MR1398999
  9. Talagrand M., Espaces de Banach faiblement K-analytiques, Annals of Math. 110 (1979), 407-438. (1979) MR0554378

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.