The nonseparability of simply presented mixed groups
Paul Hill; Charles K. Megibben
Commentationes Mathematicae Universitatis Carolinae (1998)
- Volume: 39, Issue: 1, page 1-5
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topHill, Paul, and Megibben, Charles K.. "The nonseparability of simply presented mixed groups." Commentationes Mathematicae Universitatis Carolinae 39.1 (1998): 1-5. <http://eudml.org/doc/248261>.
@article{Hill1998,
abstract = {It is demonstrated that an isotype subgroup of a simply presented abelian group can be simply presented without being a separable subgroup. In particular, the conjecture based on a variety of special cases that Warfield groups are absolutely separable is disproved.},
author = {Hill, Paul, Megibben, Charles K.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Warfield groups; simply presented; isotype subgroup; separable subgroup; Warfield groups; simply presented Abelian groups; isotype subgroups; separable subgroups},
language = {eng},
number = {1},
pages = {1-5},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {The nonseparability of simply presented mixed groups},
url = {http://eudml.org/doc/248261},
volume = {39},
year = {1998},
}
TY - JOUR
AU - Hill, Paul
AU - Megibben, Charles K.
TI - The nonseparability of simply presented mixed groups
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1998
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 39
IS - 1
SP - 1
EP - 5
AB - It is demonstrated that an isotype subgroup of a simply presented abelian group can be simply presented without being a separable subgroup. In particular, the conjecture based on a variety of special cases that Warfield groups are absolutely separable is disproved.
LA - eng
KW - Warfield groups; simply presented; isotype subgroup; separable subgroup; Warfield groups; simply presented Abelian groups; isotype subgroups; separable subgroups
UR - http://eudml.org/doc/248261
ER -
References
top- Albrecht U., Hill P., Butler groups of infinite rank and axiom 3, Czechoslovak Math. Jour. 37 (1987), 293-309. (1987) Zbl0628.20045MR0882600
- Baer R., Abelian groups without elements of finite order, Duke Math. Jour. 3 (1937), 68-122. (1937) Zbl0016.20303MR1545974
- Dugas M., Rangaswamy K.M., Separable pure subgroups of completely decomposable torsion-free groups, Arch. Math. (Basel) (1992), 332-337. (1992) MR1152619
- Fuchs L., Infinite Abelian Groups, II Academic Press New York (1973). (1973) Zbl0257.20035MR0349869
- Hill P., On the classification of abelian groups, photocopied manuscript, 1967.
- Hill P., Isotype subgroups of totally projective groups, Lecture Notes in Math. 874 Springer-Verlag New York (1973), 305-321. (1973) MR0645937
- Hill P., Megibben C., On the theory and classification of abelian p-groups, Math. Zeit. 190 (1985), 17-38. (1985) Zbl0535.20031MR0793345
- Hill P., Megibben C., Axiom 3 modules, Trans. Amer. Math. Soc. 295 (1986), 715-734. (1986) Zbl0597.20048MR0833705
- Hill P., Megibben C., Pure subgroups of torsion-free groups, Trans. Amer. Math. Soc. 303 (1987), 765-778. (1987) Zbl0627.20028MR0902797
- Hill P., Megibben C., Knice subgroups of mixed groups, Abelian Group Theory Gordon-Breach New York (1987), 765-778. (1987) Zbl0653.20057MR1011306
- Hunter R., Richman F., Global Warfield groups, Trans. Amer. Math. Soc. 266 (1981), 555-572. (1981) Zbl0471.20038MR0617551
- Wallace K., On mixed groups of torsion-free rank one with totally projective primary components, Jour. Algebra 17 (1971), 482-488. (1971) Zbl0215.39902MR0272891
- Warfield R., A classification theorem for abelian p-groups, Trans. Amer. Math. Soc. 210 (1975), 149-168. (1975) Zbl0324.20058MR0372071
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.