Butler groups of infinite rank and axiom 3
Czechoslovak Mathematical Journal (1987)
- Volume: 37, Issue: 2, page 293-309
- ISSN: 0011-4642
Access Full Article
topHow to cite
topAlbrecht, Ulrich F., and Hill, Paul. "Butler groups of infinite rank and axiom 3." Czechoslovak Mathematical Journal 37.2 (1987): 293-309. <http://eudml.org/doc/13640>.
@article{Albrecht1987,
author = {Albrecht, Ulrich F., Hill, Paul},
journal = {Czechoslovak Mathematical Journal},
keywords = {balanced cover for countable subgroups; Butler groups of infinite rank; direct sum of countable torsionfree groups; pure subgroup; - group; third axiom of countability; separable subgroups; balanced subgroups; descent subgroups; Bext},
language = {eng},
number = {2},
pages = {293-309},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Butler groups of infinite rank and axiom 3},
url = {http://eudml.org/doc/13640},
volume = {37},
year = {1987},
}
TY - JOUR
AU - Albrecht, Ulrich F.
AU - Hill, Paul
TI - Butler groups of infinite rank and axiom 3
JO - Czechoslovak Mathematical Journal
PY - 1987
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 37
IS - 2
SP - 293
EP - 309
LA - eng
KW - balanced cover for countable subgroups; Butler groups of infinite rank; direct sum of countable torsionfree groups; pure subgroup; - group; third axiom of countability; separable subgroups; balanced subgroups; descent subgroups; Bext
UR - http://eudml.org/doc/13640
ER -
References
top- D. M. Arnold, 10.1007/BFb0090520, Lecture Notes in Mathematics, Vol. 874 (pp. 1-31), Springer-Verlag, Berlin, Heidelberg, New York, 1981. (1981) Zbl0466.20030MR0645913DOI10.1007/BFb0090520
- D. M. Arnold, Notes on Butler groups and balanced extensions, preprint. Zbl0601.20050MR0850285
- R. Baer, 10.1215/S0012-7094-37-00308-9, Duke Math. J. 3 (1937), 68-122. (1937) Zbl0016.20303MR1545974DOI10.1215/S0012-7094-37-00308-9
- L. Bican, Splitting in mixed groups, Czech. Math. J. 28 (1978), 356-364. (1978) MR0480778
- L. Bican, L. Salce, 10.1007/978-3-662-21560-9_6, Lecture Notes in Mathematics, Vol. 1006, pp. 171-189, Springer-Verlag, Berlin, Heidelberg, New York, 1983. (1983) Zbl0515.20035MR0722617DOI10.1007/978-3-662-21560-9_6
- M. С. R. Butler, A class of torsion-free abelian groups of finite rank, Proc. London Math. Soc. 75 (1965), 680-698. (1965) Zbl0131.02501MR0218446
- L. Fuchs, Infinite Abelian Groups, Vol. I and II, Academic Press, London, New York, 1970 and 1973. (1970) Zbl0209.05503MR0255673
- L. Fuchs, P. Hill, The balanced-projective dimension of abelian p-groups, preprint. Zbl0602.20047MR0814915
- P. Griffith, 10.1090/S0002-9947-1969-0238957-1, Trans. Amer. Math. Soc. 139 (1969), 261-269. (1969) Zbl0194.05301MR0238957DOI10.1090/S0002-9947-1969-0238957-1
- P. Hill, 10.1007/BFb0090544, Lecture Notes in Mathematics, Vol. 874, pp. 305-321, Springer-Verlag, Berlin, Heidelberg, New York, 1983. (1983) MR0645937DOI10.1007/BFb0090544
- P. Hill, 10.1090/S0002-9939-1981-0612716-0, Proc. Amer. Math. Soc. 82 (1981), 347-350. (1981) Zbl0467.20041MR0612716DOI10.1090/S0002-9939-1981-0612716-0
- P. Hill Sind С. Megibben, The theory and classification of abelian p-groups, Math. Zeit., to appear.
- L. Lady, Extension of scalars for torsion free modules over Dedekind domains, Symposia Mathematica 23 (1979), 287-305. (1979) Zbl0425.13001MR0565611
- F. Richman, 10.1090/S0002-9947-1983-0704608-X, Trans. Amer. Math. Soc. 279 (1983), 175-185. (1983) Zbl0524.20028MR0704608DOI10.1090/S0002-9947-1983-0704608-X
Citations in EuDML Documents
top- Kulumani M. Rangaswamy, A property of -groups
- Paul Hill, William Ullery, Almost totally projective groups
- Paul Hill, Charles K. Megibben, The nonseparability of simply presented mixed groups
- Ladislav Bican, Almost Butler groups
- Charles K. Megibben, William Ullery, Isotype knice subgroups of global Warfield groups
- Ladislav Bican, Butler groups and Shelah's Singular Compactness
- Ladislav Bican, Butler groups of infinite rank
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.