Differentiability for minimizers of anisotropic integrals

Paola Cavaliere; Anna D'Ottavio; Francesco Leonetti; Maria Longobardi

Commentationes Mathematicae Universitatis Carolinae (1998)

  • Volume: 39, Issue: 4, page 685-696
  • ISSN: 0010-2628

Abstract

top
We consider a function u : Ω N , Ω n , minimizing the integral Ω ( | D 1 u | 2 + + | D n - 1 u | 2 + | D n u | p ) d x , 2 ( n + 1 ) / ( n + 3 ) p < 2 , where D i u = u / x i , or some more general functional with the same behaviour; we prove the existence of second weak derivatives D ( D 1 u ) , , D ( D n - 1 u ) L 2 and D ( D n u ) L p .

How to cite

top

Cavaliere, Paola, et al. "Differentiability for minimizers of anisotropic integrals." Commentationes Mathematicae Universitatis Carolinae 39.4 (1998): 685-696. <http://eudml.org/doc/248270>.

@article{Cavaliere1998,
abstract = {We consider a function $u:\Omega \rightarrow \mathbb \{R\}^N$, $\Omega \subset \mathbb \{R\}^n$, minimizing the integral $\int _\Omega (|D_1 u|^2 + \dots +|D_\{n-1\}u|^2 +|D_n u|^p)\,dx$, $2(n+1)/(n+3)\le p<2$, where $D_i u = \partial u/ \partial x_i$, or some more general functional with the same behaviour; we prove the existence of second weak derivatives $D(D_1 u), \dots , D(D_\{n-1\} u) \in L^2$ and $D(D_n u) \in L^p$.},
author = {Cavaliere, Paola, D'Ottavio, Anna, Leonetti, Francesco, Longobardi, Maria},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {regularity; minimizers; integral functionals; anisotropic growth; regularity; minimizers; integral functionals; anisotropic growth},
language = {eng},
number = {4},
pages = {685-696},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Differentiability for minimizers of anisotropic integrals},
url = {http://eudml.org/doc/248270},
volume = {39},
year = {1998},
}

TY - JOUR
AU - Cavaliere, Paola
AU - D'Ottavio, Anna
AU - Leonetti, Francesco
AU - Longobardi, Maria
TI - Differentiability for minimizers of anisotropic integrals
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1998
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 39
IS - 4
SP - 685
EP - 696
AB - We consider a function $u:\Omega \rightarrow \mathbb {R}^N$, $\Omega \subset \mathbb {R}^n$, minimizing the integral $\int _\Omega (|D_1 u|^2 + \dots +|D_{n-1}u|^2 +|D_n u|^p)\,dx$, $2(n+1)/(n+3)\le p<2$, where $D_i u = \partial u/ \partial x_i$, or some more general functional with the same behaviour; we prove the existence of second weak derivatives $D(D_1 u), \dots , D(D_{n-1} u) \in L^2$ and $D(D_n u) \in L^p$.
LA - eng
KW - regularity; minimizers; integral functionals; anisotropic growth; regularity; minimizers; integral functionals; anisotropic growth
UR - http://eudml.org/doc/248270
ER -

References

top
  1. Acerbi E., Fusco N., Regularity for minimizers of non-quadratic functionals: the case 1 < p < 2 , J. Math. Anal. Appl. 140 (1989), 115-135. (1989) Zbl0686.49004MR0997847
  2. Acerbi E., Fusco N., Partial regularity under anisotropic ( p , q ) growth conditions, J. Differential Equations 107 (1994), 46-67. (1994) Zbl0807.49010MR1260848
  3. Bhattacharya T., Leonetti F., Some remarks on the regularity of minimizers of integrals with anisotropic growth, Comment. Math. Univ. Carolinae 34 (1993), 597-611. (1993) Zbl0794.49034MR1263791
  4. Bhattacharya T., Leonetti F., On improved regularity of weak solutions of some degenerate, anisotropic elliptic systems, Ann. Mat. Pura Appl. 170 (1996), 241-255. (1996) Zbl0876.35030MR1441621
  5. Campanato S., Sistemi ellittici in forma divergenza. Regolarità all'interno., Quaderni Scuola Normale Superiore, Pisa, 1980. Zbl0453.35026MR0668196
  6. D'Ottavio A., A remark on a paper by Bhattacharya and Leonetti, Comment. Math. Univ. Carolinae 36 (1995), 489-491. (1995) MR1364489
  7. Fusco N., Sbordone C., Local boundedness of minimizers in a limit case, Manuscripta Math. 69 (1990), 19-25. (1990) Zbl0722.49012MR1070292
  8. Fusco N., Sbordone C., Some remarks on the regularity of minima of anisotropic integrals, Comm. Partial Differential Equations 18 (1993), 153-167. (1993) Zbl0795.49025MR1211728
  9. Giaquinta M., Multiple integrals in the calculus of variations and nonlinear elliptic systems, Annals of Mathematics Studies 105, Princeton University Press, Princeton 1983. Zbl0516.49003MR0717034
  10. Giaquinta M., Growth conditions and regularity, a counterexample, Manuscripta Math. 59 (1987), 245-248. (1987) Zbl0638.49005MR0905200
  11. Leonetti F., Higher integrability for minimizers of integral functionals with nonstandard growth, J. Differential Equations 112 (1994), 308-324. (1994) Zbl0813.49030MR1293473
  12. Marcellini P., Un example de solution discontinue d'un probleme variationnel dans ce cas scalaire, preprint, Istituto Matematico ``U. Dini'', Universita' di Firenze, 1987/88, n. 11. 
  13. Marcellini P., Regularity of minimizers of integrals of the calculus of variations with nonstandard growth conditions, Arch. Rational Mech. Anal. 105 (1989), 267-284. (1989) MR0969900
  14. Naumann J., Interior integral estimates on weak solutions of certain degenerate elliptic systems, Ann. Mat. Pura Appl. 156 (1990), 113-125. (1990) Zbl0732.35032MR1080212
  15. Nirenberg L., Remarks on strongly elliptic differential equations, Comm. Pure Appl. Math. 8 (1955), 649-675. (1955) MR0075415
  16. Troisi M., Teoremi di inclusione per spazi di Sobolev non isotropi, Ricerche di Mat. 18 (1969), 3-24. (1969) Zbl0182.16802MR0415302

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.