DiPerna-Majda measures and uniform integrability

Martin Kružík

Commentationes Mathematicae Universitatis Carolinae (1998)

  • Volume: 39, Issue: 3, page 511-523
  • ISSN: 0010-2628

Abstract

top
The purpose of this note is to discuss the relationship among Rosenthal's modulus of uniform integrability, Young measures and DiPerna-Majda measures. In particular, we give an explicit characterization of this modulus and state a criterion of the uniform integrability in terms of these measures. Further, we show applications to Fatou's lemma.

How to cite

top

Kružík, Martin. "DiPerna-Majda measures and uniform integrability." Commentationes Mathematicae Universitatis Carolinae 39.3 (1998): 511-523. <http://eudml.org/doc/248272>.

@article{Kružík1998,
abstract = {The purpose of this note is to discuss the relationship among Rosenthal's modulus of uniform integrability, Young measures and DiPerna-Majda measures. In particular, we give an explicit characterization of this modulus and state a criterion of the uniform integrability in terms of these measures. Further, we show applications to Fatou's lemma.},
author = {Kružík, Martin},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {bounded sequences; DiPerna-Majda measures; Fatou's lemma; relative sequential weak compactness; uniform integrability; Young measures; bounded sequences in ; DiPerna-Majda measures; Fatou's lemma; relative sequential weak compactness; uniform integrability; Young measures; Rosenthal modulus},
language = {eng},
number = {3},
pages = {511-523},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {DiPerna-Majda measures and uniform integrability},
url = {http://eudml.org/doc/248272},
volume = {39},
year = {1998},
}

TY - JOUR
AU - Kružík, Martin
TI - DiPerna-Majda measures and uniform integrability
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1998
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 39
IS - 3
SP - 511
EP - 523
AB - The purpose of this note is to discuss the relationship among Rosenthal's modulus of uniform integrability, Young measures and DiPerna-Majda measures. In particular, we give an explicit characterization of this modulus and state a criterion of the uniform integrability in terms of these measures. Further, we show applications to Fatou's lemma.
LA - eng
KW - bounded sequences; DiPerna-Majda measures; Fatou's lemma; relative sequential weak compactness; uniform integrability; Young measures; bounded sequences in ; DiPerna-Majda measures; Fatou's lemma; relative sequential weak compactness; uniform integrability; Young measures; Rosenthal modulus
UR - http://eudml.org/doc/248272
ER -

References

top
  1. Balder E.J., On weak convergence implying strong convergence in L 1 spaces, Bull. Austral. Math. Soc. 33 (1986), 363-368. (1986) MR0837481
  2. Balder E.J., On equivalence of strong and weak convergence in L 1 -spaces under extreme point conditions, Israel J. Math. 75 (1991), 21-47. (1991) MR1147289
  3. Balder E.J., On weak convergence implying strong convergence under extremal conditions, J. Math. Anal. Appl. 163 (1992), 147-156. (1992) Zbl0768.46013MR1144712
  4. Ball J.M., A version of the fundamental theorem for Young measures, in: PDEs and Continuum Models of Phase Transition (M. Rascle, D. Serre, M. Slemrod, eds.), Lecture Notes in Physics, Vol. 344, Springer-Verlag, Berlin, 1989, pp.207-215. Zbl0991.49500MR1036070
  5. Ball J.M., Murat F., Remarks on Chacon's biting lemma, Proc. Amer. Math. Soc. 107 (1989), 655-663. (1989) Zbl0678.46023MR0984807
  6. Berlioocchi H., Lasry J.M., Intégrandes normales et mesures paramétrées en calcul des variations, Bull. Soc. Math. France 101 (1973), 129-184. (1973) MR0344980
  7. Bourgain J., Rosenthal H.P., Martingales valued in certain subspaces of L 1 , Israel J. Math. 37 (1980), 54-75. (1980) MR0599302
  8. Brooks J.K., Chacon R.V., Continuity and compactness of measures, Adv. in Math. 37 (1980), 16-26. (1980) Zbl0463.28003MR0585896
  9. Castaing C., Méthode de compacticité et de décomposition applications: minimisation, convergence des martingales, lemme de Fatou multivoque, Ann. Mat. Pura Appl. 164 (1993), 51-75. (1993) MR1243948
  10. Dacorogna B., Weak Continuity and Weak Lower Semicontinuity of Non-Linear Functionals, Lecture Notes in Math., Vol. 922, Springer-Verlag, Berlin, 1982. MR0658130
  11. De la Vallée Poussin C., Sur l'intégrale de Lebesgue, Trans. Amer. Math. Soc. 16 (1915), 435-501. (1915) MR1501024
  12. DiPerna R.J., Majda A.J., Oscillations and concentrations in weak solutions of the incompressible fluid equations, Math. Physics 108 (1987), 667-689. (1987) Zbl0626.35059MR0877643
  13. Dunford N., Schwartz J.T., Linear Operators, Part I, Interscience, New York, 1967. Zbl0635.47003
  14. Engelking R., General Topology, ed., PWN, Warszawa, 1985. Zbl0684.54001
  15. Evans L.C., Weak Convergence Methods for Nonlinear Partial Differential Equations, A.M.S., Providence, 1990. Zbl0698.35004MR1034481
  16. Fonseca I., Müller S., Pedregal P., Analysis of concentration and oscillation effects generated by gradients, preprint. MR1617712
  17. Kinderlehrer D., Pedregal P., Weak convergence of integrands and the Young measure representation, SIAM J. Math. Anal. 23 (1992), 1-19. (1992) Zbl0757.49014MR1145159
  18. Kinderlehrer D., Pedregal P., Gradient Young measures generated by sequences in Sobolev spaces, J. Geom. Anal. 4 (1994), 59-90. (1994) Zbl0828.46031MR1274138
  19. Klei H.-A., Miyara M., Une extension du lemme de Fatou, Bull. Sci. Math. serie 115 (1991), 211-221. (1991) Zbl0734.28004MR1101024
  20. Kružík M., Roubíček T., Explicit characterization of L p -Young measures, J. Math. Anal. Appl. 198 (1996), 830-843. (1996) MR1377827
  21. Kružík M., T. Roubíček T., On the measures of DiPerna and Majda, Mathematica Bohemica 122 (1997), 383-399. (1997) MR1489400
  22. Piccinini L., Valadier M., Uniform Integrability and Young measures, J. Math. Anal. Appl. 195 (1995), 428-439. (1995) Zbl0930.28004MR1354553
  23. Roubíček T., Nonconcentrating generalized Young functionals, Comment. Math. Univ. Carolinae 38 (1997), 91-99. (1997) MR1455472
  24. Roubíček T., Relaxation in Optimization Theory and Variational Calculus, W. de Gruyter, Berlin, 1997. MR1458067
  25. Saadoune M., Valadier M., Extraction of a ``good'' sequence from a bounded sequence of integrable functions, J. Convex Anal. 2 (1994), 345-357. (1994) 
  26. Schonbek M.E., Convergence of solutions to nonlinear dispersive equations, Comm. Partial Diff. Equations 7 (1982), 959-1000. (1982) Zbl0496.35058MR0668586
  27. Slaby M., Strong convergence of vector valued pramarts and submarts, Probability and Math. Stat. 5 (1985), 187-196. (1985) MR0816695
  28. Tartar L., Compensated compactness and applications to partial differential equations, in: Nonlinear Analysis and Mechanics (R.J. Knops, ed.), Heriott-Watt Symposium IV, Pitman Res. Notes in Math., Vol. 39, San Francisco, 1979. Zbl0437.35004MR0584398
  29. Valadier M., Young measures, in: Methods of Nonconvex Analysis (A. Cellina, ed.), Lecture Notes in Math., Vol. 1446, Springer-Verlag, Berlin, 1990, 152-188. Zbl1067.28001MR1079763
  30. Warga J., Optimal Control of Differential and Functional Equations, Academic Press, New York, 1972. Zbl0253.49001MR0372708
  31. Young L.C., Generalized curves and the existence of an attained absolute minimum in the calculus of variations, Comptes Rendus de la Société des Sciences et des Lettres de Varsovie Classe III 30 (1937), 212-234. (1937) Zbl0019.21901
  32. Young L.C., Lectures on the Calculus of Variations and Optimal Control Theory, W.B. Saunders, Philadelphia, 1969. Zbl0289.49003MR0259704

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.