Around splitting and reaping
Commentationes Mathematicae Universitatis Carolinae (1998)
- Volume: 39, Issue: 2, page 269-279
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topBrendle, Jörg. "Around splitting and reaping." Commentationes Mathematicae Universitatis Carolinae 39.2 (1998): 269-279. <http://eudml.org/doc/248285>.
@article{Brendle1998,
abstract = {We prove several results on some cardinal invariants of the continuum which are closely related to either the splitting number $\mathfrak \{s\}$ or its dual, the reaping number $\mathfrak \{r\}$.},
author = {Brendle, Jörg},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {cardinal invariants of the continuum; splitting number; open splitting number; reaping number; $\sigma $-reaping number; Cicho’n’s diagram; Hechler forcing; finite support iteration; cardinal invariants of the continuum; splitting number; open splitting number; reaping number; -reaping number; Cichoń’s diagram; Hechler forcing; finite support iteration},
language = {eng},
number = {2},
pages = {269-279},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Around splitting and reaping},
url = {http://eudml.org/doc/248285},
volume = {39},
year = {1998},
}
TY - JOUR
AU - Brendle, Jörg
TI - Around splitting and reaping
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1998
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 39
IS - 2
SP - 269
EP - 279
AB - We prove several results on some cardinal invariants of the continuum which are closely related to either the splitting number $\mathfrak {s}$ or its dual, the reaping number $\mathfrak {r}$.
LA - eng
KW - cardinal invariants of the continuum; splitting number; open splitting number; reaping number; $\sigma $-reaping number; Cicho’n’s diagram; Hechler forcing; finite support iteration; cardinal invariants of the continuum; splitting number; open splitting number; reaping number; -reaping number; Cichoń’s diagram; Hechler forcing; finite support iteration
UR - http://eudml.org/doc/248285
ER -
References
top- Bartoszyński T., Combinatorial aspects of measure and category, Fundamenta Mathematicae 127 (1987), 225-239. (1987) MR0917147
- Bartoszyński T., Judah H., Set Theory. On the Structure of the Real Line, A.K. Peters, Wellesley, Massachusetts, 1995. MR1350295
- Brendle J., Mob families and mad families, Archive for Mathematical Logic, to appear. Zbl0905.03034MR1619601
- Brendle J., Dow's principle and Q-sets, Canadian Math. Bull., to appear. Zbl0933.03059MR1695894
- Brendle J., Shelah S., Evasion and prediction II, Journal of the London Mathematical Society 53 (1996), 19-27. (1996) Zbl0854.03045MR1362683
- Kamburelis A., Wȩglorz B., Splittings, Archive for Mathematical Logic 35 (1996), 263-277. (1996) MR1390805
- Leathrum T., A special class of almost disjoint families, Journal of Symbolic Logic 60 (1995), 879-891. (1995) Zbl0835.03014MR1348999
- Miller A., Some properties of measure and category, Transactions of the American Mathematical Society 266 (1981), 93-114 and 271 (1982), 347-348. (1981) Zbl0472.03040MR0613787
- Miller A., A characterization of the least cardinal for which the Baire category theorem fails, Proceedings of the American Mathematical Society 86 (1982), 498-502. (1982) Zbl0506.03012MR0671224
- Shelah S., Advances in cardinal arithmetic, Finite and infinite combinatorics in sets and logic (N.W. Sauer, R.E. Woodrow and B. Sands, eds.), Kluwer, Dordrecht, 1993, pp.355-383. Zbl0844.03028MR1261217
- van Douwen E.K., The integers and topology, Handbook of Set-theoretic Topology (K. Kunen and J.E. Vaughan, eds.), North-Holland, Amsterdam, 1984, pp.111-167. Zbl0561.54004MR0776619
- Vaughan J., Small uncountable cardinals and topology, Open problems in topology (J. van Mill and G. Reed, eds.), North-Holland, Amsterdam, 1990, pp.195-218. MR1078647
- Vojtáš P., Cardinalities of noncentered systems of subsets of , Discrete Mathematics 108 (1992), 125-129. (1992) MR1189835
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.