On the homology of free Lie algebras
Commentationes Mathematicae Universitatis Carolinae (1998)
- Volume: 39, Issue: 4, page 661-669
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topPopescu, Calin. "On the homology of free Lie algebras." Commentationes Mathematicae Universitatis Carolinae 39.4 (1998): 661-669. <http://eudml.org/doc/248286>.
@article{Popescu1998,
abstract = {Given a principal ideal domain $R$ of characteristic zero, containing $1/2$, and a connected differential non-negatively graded free finite type $R$-module $V$, we prove that the natural arrow $ \mathbb \{L\} \{F\hspace\{-0.8pt\}H\}(V) \rightarrow \{F\hspace\{-0.8pt\}H\} \mathbb \{L\} (V)$ is an isomorphism of graded Lie algebras over $R$, and deduce thereby that the natural arrow $\{U\hspace\{-1.0pt\}F\hspace\{-0.8pt\}H\}\mathbb \{L\} (V) \rightarrow \{F\hspace\{-0.8pt\}H\hspace\{-0.4pt\}U\} \mathbb \{L\} (V)$ is an isomorphism of graded cocommutative Hopf algebras over $R$; as usual, $F$ stands for free part, $H$ for homology, $\mathbb \{L\}$ for free Lie algebra, and $U$ for universal enveloping algebra. Related facts and examples are also considered.},
author = {Popescu, Calin},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {differential graded Lie algebra; free Lie algebra on a differential graded module; universal enveloping algebra; differential graded Lie algebra; free Lie algebra; universal enveloping algebra; Quillen's model},
language = {eng},
number = {4},
pages = {661-669},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On the homology of free Lie algebras},
url = {http://eudml.org/doc/248286},
volume = {39},
year = {1998},
}
TY - JOUR
AU - Popescu, Calin
TI - On the homology of free Lie algebras
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1998
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 39
IS - 4
SP - 661
EP - 669
AB - Given a principal ideal domain $R$ of characteristic zero, containing $1/2$, and a connected differential non-negatively graded free finite type $R$-module $V$, we prove that the natural arrow $ \mathbb {L} {F\hspace{-0.8pt}H}(V) \rightarrow {F\hspace{-0.8pt}H} \mathbb {L} (V)$ is an isomorphism of graded Lie algebras over $R$, and deduce thereby that the natural arrow ${U\hspace{-1.0pt}F\hspace{-0.8pt}H}\mathbb {L} (V) \rightarrow {F\hspace{-0.8pt}H\hspace{-0.4pt}U} \mathbb {L} (V)$ is an isomorphism of graded cocommutative Hopf algebras over $R$; as usual, $F$ stands for free part, $H$ for homology, $\mathbb {L}$ for free Lie algebra, and $U$ for universal enveloping algebra. Related facts and examples are also considered.
LA - eng
KW - differential graded Lie algebra; free Lie algebra on a differential graded module; universal enveloping algebra; differential graded Lie algebra; free Lie algebra; universal enveloping algebra; Quillen's model
UR - http://eudml.org/doc/248286
ER -
References
top- Anick D.J., An -local Milnor-Moore theorem, Adv. Math. 77 (1989), 116-136. (1989) Zbl0684.55010MR1014074
- Cohen F.R., Moore J.C., Niesendorfer J.A., Torsion in homotopy groups, Ann. of Math. 109 (1979), 121-168. (1979) MR0519355
- Eilenberg S., Moore J.C., Homology and fibrations I, Coalgebras, cotensor product and its derived functors, Comment. Math. Helv. 40 (1966), 199-236. (1966) Zbl0148.43203MR0203730
- Halperin S., Universal enveloping algebras and loop space homology, J. Pure Appl. Algebra 83 (1992), 237-282. (1992) Zbl0769.57025MR1194839
- Hilton P., Wu Y.-C., A Course in Modern Algebra (especially Chapter 5, Section 4), John Wiley and Sons, Inc., New York, London, Sydney, Toronto, 1974. MR0345744
- Jacobson N., Basic Algebra I (especially Chapter 3), second edition, W.H. Freeman and Co., New York, 1985. MR0780184
- Milnor J.W., Moore J.C., On the structure of Hopf algebras, Ann. of Math. 81 (1965), 211-264. (1965) Zbl0163.28202MR0174052
- Popescu C., Non-Isomorphic UHL and HUL, Rapport no. 257, Séminaire Mathématique, Institut de Mathématique, Université Catholique de Louvain, Belgique, February, 1996.
- Popescu C., On UHL and HUL, Rapport no. 267, Séminaire Mathématique, Institut de Mathématique, Université Catholique de Louvain, Belgique, December, 1996; to appear in the Bull. Belgian Math. Soc. Simon Stevin. Zbl1073.17502MR1705144
- Quillen D.G., Rational homotopy theory, Ann. of Math. 90 (1969), 205-295. (1969) Zbl0191.53702MR0258031
- Scheerer H., Tanré D., The Milnor-Moore theorem in tame homotopy theory, Manuscripta Math. 70 (1991), 227-246. (1991) MR1089059
- Tanré D., Homotopie Rationnelle: Modèles de Chen, Quillen, Sullivan, LNM 1025, Springer-Verlag, Berlin, Heidelberg, New York, 1982. MR0764769
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.