A homotopy Lie-Rinehart resolution and classical BRST cohomology.
Page 1 Next
Kjeseth, Lars (2001)
Homology, Homotopy and Applications
Allahtan Victor Gnedbaye (1999)
Annales de l'institut Fourier
Leibniz algebras are a non-commutative version of usual Lie algebras. We introduce a notion of (pre)crossed Leibniz algebra which is a simultaneous generalization of notions of representation and two-sided ideal of a Leibniz algebra. We construct the Leibniz algebra of biderivations on crossed Leibniz algebras and we define a non-abelian tensor product of Leibniz algebras. These two notions are adjoint to each other. A (co)homological characterization of these new algebraic objects enables us to...
Ralph Strebel (1979)
Commentarii mathematici Helvetici
R. Parthasarathy (1977)
Mathematische Annalen
A.N. Varchenko, Vadim V. Schechtman (1991)
Inventiones mathematicae
Luis G. Casian (1986)
Mathematische Annalen
Shrawan Kumar (1990)
Mathematische Annalen
Svatopluk Krýsl (2004)
Acta Universitatis Carolinae. Mathematica et Physica
Michael Falk, Vadim Schechtman, Alexander Varchenko (2014)
Journal de l’École polytechnique — Mathématiques
We study the blow-ups of configuration spaces. These spaces have a structure of what we call an Orlik–Solomon manifold; it allows us to compute the intersection cohomology of certain flat connections with logarithmic singularities using some Aomoto type complexes of logarithmic forms. Using this construction we realize geometrically the Bernstein–Gelfand–Gelfand resolution as an Aomoto complex.
B. Cox, V. Futorny, D. Melville (1996)
Mathematische Zeitschrift
N.R. Wallach, Rocha-Caridi, A. (1983)
Inventiones mathematicae
N. Ramabhadran (1966)
Mathematische Zeitschrift
Michele Vergne (1970)
Bulletin de la Société Mathématique de France
Claude Godbillon (1972/1973)
Séminaire Bourbaki
Kenneth A. Brown, Thierry Levasseur (1985)
Mathematische Zeitschrift
L. M. Camacho, J. R. Gómez, R. M. Navarro (2000)
Extracta Mathematicae
Welker, Volkmar (1997)
The Electronic Journal of Combinatorics [electronic only]
Daniel Tarazona (1982)
Stochastica
In this paper the concepts of mixed cartesian square and quasi-cocartesian square, already known in the category of groups, are adapted to the category of Lie algebras. These concepts can be used in the study of the obstructions of Lie algebra extensions in the same way that Wu has studied the obstructions of group extensions.
V. D. Liakhovski (1972)
Annales de l'I.H.P. Physique théorique
Rupert W.T. Yu (1995)
Mathematische Annalen
Page 1 Next