Sequential convergences in a vector lattice

Ján Jakubík

Mathematica Bohemica (1998)

  • Volume: 123, Issue: 1, page 33-48
  • ISSN: 0862-7959

Abstract

top
In the present paper we deal with sequential convergences on a vector lattice L which are compatible with the structure of L .

How to cite

top

Jakubík, Ján. "Sequential convergences in a vector lattice." Mathematica Bohemica 123.1 (1998): 33-48. <http://eudml.org/doc/248295>.

@article{Jakubík1998,
abstract = {In the present paper we deal with sequential convergences on a vector lattice $L$ which are compatible with the structure of $L$.},
author = {Jakubík, Ján},
journal = {Mathematica Bohemica},
keywords = {vector lattice; sequential convergence; archimedean property; Brouwerian lattice; vector lattice; sequential convergence; archimedean property; Brouwerian lattice},
language = {eng},
number = {1},
pages = {33-48},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Sequential convergences in a vector lattice},
url = {http://eudml.org/doc/248295},
volume = {123},
year = {1998},
}

TY - JOUR
AU - Jakubík, Ján
TI - Sequential convergences in a vector lattice
JO - Mathematica Bohemica
PY - 1998
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 123
IS - 1
SP - 33
EP - 48
AB - In the present paper we deal with sequential convergences on a vector lattice $L$ which are compatible with the structure of $L$.
LA - eng
KW - vector lattice; sequential convergence; archimedean property; Brouwerian lattice; vector lattice; sequential convergence; archimedean property; Brouwerian lattice
UR - http://eudml.org/doc/248295
ER -

References

top
  1. G. Birkhoff, Lattice Theory, Third edition, Providence, 1967. (1967) Zbl0153.02501MR0227053
  2. P. Conrad, Lattice Ordered Groups, Tulane University, 1970. (1970) Zbl0258.06011
  3. M. Harminc, Sequential convergences on abelian lattice ordered groups, Convergence Structures, Proc. Conf. Bechyně 1984, Mathematical Research 24 (1985), 153-158. (1984) MR0835480
  4. M. Harminc, The cardinality of the system of all sequential convergences on an abelian lattice ordered group, Czechoslovak Math. J. 37 (1987), 533-546. (1987) MR0913986
  5. M. Harminc, Sequential convergences on lattice ordered groups, Czechoslovak Math. J. 39 (1989), 232-238. (1989) MR0992130
  6. M. Harminc J. Jakubík, Maximal convergences and minimal proper convergences in l-groups, Czechoslovak Math. J. 39 (1989), 631-640. (1989) MR1017998
  7. J. Jakubík, Convergences and complete distributivity of lattice ordered groups, Math. Slovaca 38 (1988), 269-272. (1988) MR0977905
  8. J. Jakubík, On summability in convergence l-groups, Časopis Pěst. Mat. 113 (1988), 286-292. (1988) MR0960765
  9. J. Jakubík, On some types of kernels of a convergence l-group, Czechoslovak Math. J. 39 (1989), 239-247. (1989) MR0992131
  10. J. Jakubík, Lattice ordered groups having a largest convergence, Czechoslovak Math. J. 39 (1989), 717-729. (1989) MR1018008
  11. J. Jakubík, Sequential convergences in Boolean algebras, Czechoslovak Math. J. 38 (1988), 520-530. (1988) MR0950306
  12. J. Jakubík, Convergences and higher degrees of distributivity in lattice ordered groups and Boolean algebras, Czechoslovak Math. J. 40 (1990), 453-458. (1990) MR1065024
  13. L. V. Kantorovich B. Z. Vulikh A. G. Pinsker, Functional Analysis in Semiordered Spaces, Moskva, 1950. (In Russian.) (1950) 
  14. S. Leader, Sequential convergence in lattice groups, In: Problems in analysis, Sympos. in Honor of S. Bochner. Princeton Univ. Press, 1970, pp. 273-290. (1970) Zbl0212.03703MR0344842
  15. L. A. Ľusternik V. I. Sobolev, Elements of Functional Analysis, Moskva, 1951. (In Russian.) (1951) 
  16. W. A. J. Luxemburg A. C. Zaanen, Riesz Spaces, Vol. 1. Amsterdam-London, 1971. (1971) 
  17. P. Mikusiński, Problems posed at the conference, Proc. Conf. on Convergence, Szczyrk 1979. Katowice 1980, pp. 110-112. (1979) MR0639325
  18. J. Novák, On convergence groups, Czechoslovak Math. J. 20 (1970), 357-374. (1970) MR0263973
  19. B. Z. Vulikh, Introduction to the Theory of Semiordered Spaces, Moskva, 1961. (In Russian.) (1961) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.