Digraphs contractible onto
Stefan Janaqi; François Lescure; M. Maamoun; Henry Meyniel
Mathematica Bohemica (1998)
- Volume: 123, Issue: 4, page 365-369
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topJanaqi, Stefan, et al. "Digraphs contractible onto $^*K_3$." Mathematica Bohemica 123.4 (1998): 365-369. <http://eudml.org/doc/248304>.
@article{Janaqi1998,
abstract = {We show that any digraph on $n\ge 3$ vertices and with not less than $3n-3$ arcs is contractible onto $\{\}^*\!K_3$.},
author = {Janaqi, Stefan, Lescure, François, Maamoun, M., Meyniel, Henry},
journal = {Mathematica Bohemica},
keywords = {digraph; minor; contraction; digraph; minor; contraction},
language = {eng},
number = {4},
pages = {365-369},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Digraphs contractible onto $^*K_3$},
url = {http://eudml.org/doc/248304},
volume = {123},
year = {1998},
}
TY - JOUR
AU - Janaqi, Stefan
AU - Lescure, François
AU - Maamoun, M.
AU - Meyniel, Henry
TI - Digraphs contractible onto $^*K_3$
JO - Mathematica Bohemica
PY - 1998
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 123
IS - 4
SP - 365
EP - 369
AB - We show that any digraph on $n\ge 3$ vertices and with not less than $3n-3$ arcs is contractible onto ${}^*\!K_3$.
LA - eng
KW - digraph; minor; contraction; digraph; minor; contraction
UR - http://eudml.org/doc/248304
ER -
References
top- Bollobas B., Catlin P. A., Erdös P., 10.1016/S0195-6698(80)80001-1, European J. Combin. 1 (1980), 195-199. (1980) Zbl0457.05041MR0593989DOI10.1016/S0195-6698(80)80001-1
- Dirac G. A., 10.1112/jlms/s1-27.1.85, J. London Math. Soc. 27 (1952), 85-92. (1952) Zbl0046.41001MR0045371DOI10.1112/jlms/s1-27.1.85
- Duchet P., Kaneti V., Sur la contractibilité d’un graphe orienté en , Discrete Math. 130 (1994), 57-68. (1994) MR1284749
- Hadwiger H., Über eine Klassifikation der Streckenkcomplexe, Vierteljschr. Naturforsch. Ges. Zürich 88 (1943), 133-142. (1943) MR0012237
- Jacob H., Meyniel H., Extensions of Turan's and Brooks theorem and new notions of stability and colouring in digraphs, Ann. Discrete Math. 17 (1983), 365-370. (1983)
- Jagger C., 10.1002/(SICI)1097-0118(199603)21:3<343::AID-JGT10>3.0.CO;2-I, J. Graph. Theory 21 (1996), 343-350. (1996) Zbl0844.05046MR1374908DOI10.1002/(SICI)1097-0118(199603)21:3<343::AID-JGT10>3.0.CO;2-I
- Kostochka A. V., 10.1007/BF02579141, Combinatorica 4 (1984), 307-316. (1984) MR0779891DOI10.1007/BF02579141
- Meyniel H., Contractibilité de graphes orienté on , Private communication.
- Robertson N., Seymour P., Thomas R., 10.1007/BF01202354, Combinatorica 13 (1993), 279-361. (1993) MR1238823DOI10.1007/BF01202354
- Thomason A., 10.1017/S0305004100061521, Math. Proc. Combridge Philos. Soc. 95 (1984), 261-265. (1984) Zbl0551.05047MR0735367DOI10.1017/S0305004100061521
- Wagner K., 10.1007/BF01360256, Math. Ann. 141 (1960), 433-451. (1960) Zbl0096.17904MR0121309DOI10.1007/BF01360256
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.